Independent component analysis for multivariate functional data

被引:12
作者
Virta, Joni [1 ,2 ]
Li, Bing [3 ]
Nordhausen, Klaus [4 ]
Oja, Hannu [1 ]
机构
[1] Univ Turku, Turku, Finland
[2] Aalto Univ, Espoo, Finland
[3] Penn State Univ, University Pk, PA 16802 USA
[4] Vienna Univ Technol, Vienna, Austria
基金
美国国家科学基金会; 芬兰科学院; 奥地利科学基金会;
关键词
Covariance operator; Dimension reduction; Functional principal component analysis; Fourth order blind identification; Hilbert space; Joint approximate diagonalization of eigenmatrices; FASTICA; MODEL; ALGORITHM; NETWORKS;
D O I
10.1016/j.jmva.2019.104568
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend two methods of independent component analysis, fourth order blind identification and joint approximate diagonalization of eigen-matrices, to vector-valued functional data. Multivariate functional data occur naturally and frequently in modern applications, and extending independent component analysis to this setting allows us to distill important information from this type of data, going a step further than the functional principal component analysis. To allow the inversion of the covariance operator we make the assumption that the dependency between the component functions lies in a finite-dimensional subspace. In this subspace we define fourth cross-cumulant operators and use them to construct the two novel, Fisher consistent methods for solving the independent component problem for vector-valued functions. Both simulations and an application on a hand gesture data set show the usefulness and advantages of the proposed methods over functional principal component analysis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 52 条
[1]   Kernel independent component analysis [J].
Bach, FR ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (01) :1-48
[2]   JOINT MEASURES AND CROSS-COVARIANCE OPERATORS [J].
BAKER, CR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) :273-289
[3]   Principal components for multivariate functional data [J].
Berrendero, J. R. ;
Justel, A. ;
Svarc, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) :2619-2634
[4]   Consistent noisy independent component analysis [J].
Bonhomme, Stephane ;
Robin, Jean-Marc .
JOURNAL OF ECONOMETRICS, 2009, 149 (01) :12-25
[5]  
Bosq D., 2000, Linear Processes in Function Space: Theory and Applications
[6]  
Calhoun V.D., 2003, INT WORKSH IND COMP
[7]  
Cardoso J.-F., 1989, ICASSP-89: 1989 International Conference on Acoustics, Speech and Signal Processing (IEEE Cat. No.89CH2673-2), P2109, DOI 10.1109/ICASSP.1989.266878
[8]   Jacobi angles for simultaneous diagonalization [J].
Cardoso, JF ;
Souloumiac, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) :161-164
[9]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[10]  
Cardoso JF, 1998, INT CONF ACOUST SPEE, P1941, DOI 10.1109/ICASSP.1998.681443