Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition

被引:66
作者
Weber, M. J. [1 ]
Verheijen, M. A. [1 ,2 ]
Bol, A. A. [1 ]
Kessels, W. M. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Philips Innovat Serv, NL-5656 AE Eindhoven, Netherlands
关键词
atomic layer deposition; core/shell nanoparticles; catalysis; OXYGEN REDUCTION REACTION; CORE-SHELL NANOSTRUCTURES; PLATINUM NANOPARTICLES; METAL NANOCRYSTALS; CARBON NANOTUBES; FUEL-CELLS; CATALYSTS; GROWTH; FILMS; PARTICLES;
D O I
10.1088/0957-4484/26/9/094002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.
引用
收藏
页数:11
相关论文
共 61 条
[11]   Effects of Pt Shell Thicknesses on the Atomic Structure of Ru-Pt Core-Shell Nanoparticles for Methanol Electrooxidation Applications [J].
Chen, Tsan-Yao ;
Lin, Tsang-Lang ;
Luo, Tzy-Jiun Mark ;
Choi, Yongjae ;
Lee, Jyh-Fu .
CHEMPHYSCHEM, 2010, 11 (11) :2383-2392
[12]   Supported Ru-Pt Bimetallic Nanoparticle Catalysts Prepared by Atomic Layer Deposition [J].
Christensen, Steven T. ;
Feng, Hao ;
Libera, Joseph L. ;
Guo, Neng ;
Miller, Jeffrey T. ;
Stair, Peter C. ;
Elam, Jeffrey W. .
NANO LETTERS, 2010, 10 (08) :3047-3051
[13]   Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers [J].
Farm, Elina ;
Kemell, Marianna ;
Ritala, Mikko ;
Leskela, Markku .
THIN SOLID FILMS, 2008, 517 (02) :972-975
[14]   Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition [J].
Feng, Hao ;
Libera, Joseph A. ;
Stair, Peter C. ;
Miller, Jeffrey T. ;
Elam, Jeffrey W. .
ACS CATALYSIS, 2011, 1 (06) :665-673
[15]   Nanoalloys: From theory to applications of alloy clusters and nanoparticles [J].
Ferrando, Riccardo ;
Jellinek, Julius ;
Johnston, Roy L. .
CHEMICAL REVIEWS, 2008, 108 (03) :845-910
[16]   Precious metal magic: catalytic wizardry [J].
Freyschlag, Cassandra G. ;
Madix, Robert J. .
MATERIALS TODAY, 2011, 14 (04) :134-142
[17]   Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J].
Fu, Q ;
Saltsburg, H ;
Flytzani-Stephanopoulos, M .
SCIENCE, 2003, 301 (5635) :935-938
[18]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[19]   New Insights into the Complexities of Shell Growth and the Strong Influence of Particle Volume in Nonblinking "Giant" Core/Shell Nanocrystal Quantum Dots [J].
Ghosh, Yagnaseni ;
Mangum, Benjamin D. ;
Casson, Joanna L. ;
Williams, Darrick J. ;
Htoon, Han ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (23) :9634-9643
[20]   Mechanism of the water gas shift reaction on Pt: First principles, experiments, and microkinetic modeling [J].
Grabow, Lars C. ;
Gokhale, Amit A. ;
Evans, Steven T. ;
Dumesic, James A. ;
Mavrikakis, Manos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (12) :4608-4617