Heat Transfer Past a Rotationally Oscillating Circular Cylinder in Linear Shear Flow

被引:1
|
作者
Kumar, Atendra [1 ,2 ]
Ray, Rajendra K. [3 ]
Mittal, H. V. R. [4 ,5 ]
机构
[1] Natl Inst Technol Srinagar, Dept Math, Srinagar 190006, Jammu & Kashmir, India
[2] Indian Inst Sci Bangalore, Dept Computat & Data Sci, Bangalore 560012, Karnataka, India
[3] Indian Inst Technol Mandi, Sch Baic Sci, Mandi 175005, Himachal Prades, India
[4] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[5] Indian Inst Technol Palakkad, Dept Math, Ahalia Integrated Campus, Kozhippara 678557, Palakkad, India
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2022年 / 144卷 / 07期
关键词
circular cylinder; rotational oscillation; heat transfer; shear flow; finite difference; Navier-Stokes equations; LAMINAR-FLOW; NUMERICAL-SIMULATION; ISOTHERMAL CYLINDER; FORCED-CONVECTION; ROTATING CYLINDER; FLUID-FLOW; UNIFORM; VIBRATION; MODES; DRAG;
D O I
10.1115/1.4054350
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study investigates the unsteady, two-dimensional flow and heat transfer past a rotationally oscillating circular cylinder in linear shear flow. A higher order compact (HOC) finite difference scheme is used to solve the governing Navier-Stokes equations coupled with the energy equation on a nonuniform grid in polar coordinates. The hydrodynamic and thermal features of the flow are mainly influenced by the shear rate (K), Reynolds number (Re), Prandtl number (Pr), and the cylinder oscillation parameters, i.e., oscillation amplitude (alpha(m)), the frequency ratio (f(r)). The simulations are performed for Re = 100; Pr = 0.5 - 1.0; 0:0 <= K <= 0.15, and 0.5 <= alpha(m) <= 2:0. The numerical scheme is validated with the existing literature studies. Partial and full vortex suppression is observed for certain values of shear parameter K. The connection between heat transfer and vortex shedding phenomenon is examined where a pronounced increase in the heat transfer is observed for certain values of oscillation parameter, relative to the nonshear flow case.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Similarities of Flow and Heat Transfer around a Circular Cylinder
    Ma, Hao
    Duan, Zhipeng
    SYMMETRY-BASEL, 2020, 12 (04):
  • [22] EFFECT OF ROTATION RATES ON THE LAMINAR FLOW AND HEAT TRANSFER PAST A CIRCULAR CYLINDER
    Bouakkaz, R.
    Talbi, K.
    Ouazzazi, M.
    Khelili, Y.
    Salhi, F.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 32 (02) : 519 - 529
  • [23] Structural bifurcation analysis of vortex shedding from shear flow past circular cylinder
    Kumar, Atendra
    Ray, Rajendra K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03)
  • [24] Heat transfer in flow around a rotary oscillating cylinder at a high subcritical Reynolds number: A computational study
    Hadziabdic, M.
    Palkin, E.
    Mullyadzhanov, R.
    Hanjalic, K.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2019, 79
  • [25] Vortex shedding and heat transfer in rotationally oscillating cylinders
    Sellappan, Prabu
    Pottebaum, Tait
    JOURNAL OF FLUID MECHANICS, 2014, 748 : 549 - 579
  • [26] Inclination effects on heat transfer by an oscillating square cylinder in channel flow
    Derouich, Y.
    Nasri, Z.
    Abide, S.
    Laatar, A. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 125 : 1105 - 1120
  • [27] Heat Transfer Simulation of Rarefied Laminar Flow past a Circular Cylinder
    Celenligil, M. Cevdet
    30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD 30), 2016, 1786
  • [28] Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder
    Lee, Jung Yeop
    Lee, Sang Joon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2006, 30 (04) : 298 - 305
  • [29] Effects of polymer/surfactant additives on forced convective heat transfer in vortex shedding flow past a circular cylinder
    Sahin, Caglar
    Atalik, Kunt
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 145
  • [30] Pulsatile flow past an oscillating cylinder
    Qamar, Adnan
    Seda, Robinson
    Bull, Joseph L.
    PHYSICS OF FLUIDS, 2011, 23 (04)