Variation Interpretation Predictors: Principles, Types, Performance, and Choice

被引:93
作者
Niroula, Abhishek [1 ]
Vihinen, Mauno [1 ]
机构
[1] Lund Univ, Dept Expt Med Sci, BMC B13, SE-22184 Lund, Sweden
关键词
variation interpretation; variation prediction; variation effect; mutation effect prediction; computational tools; prediction methods; AMINO-ACID SUBSTITUTIONS; SINGLE NUCLEOTIDE POLYMORPHISMS; PROTEIN STABILITY CHANGES; DISEASE-CAUSING MUTATIONS; IDENTIFYING DRIVER GENES; SPLICE-SITE PREDICTION; MISSENSE VARIANTS; GENOMIC VARIANTS; COMPUTATIONAL METHODS; SEQUENCE VARIATION;
D O I
10.1002/humu.22987
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Next-generation sequencing methods have revolutionized the speed of generating variation information. Sequence data have a plethora of applications and will increasingly be used for disease diagnosis. Interpretation of the identified variants is usually not possible with experimental methods. This has caused a bottleneck that many computational methods aim at addressing. Fast and efficient methods for explaining the significance and mechanisms of detected variants are required for efficient precision/personalized medicine. Computational prediction methods have been developed in three areas to address the issue. There are generic tolerance (pathogenicity) predictors for filtering harmful variants. Gene/protein/disease-specific tools are available for some applications. Mechanism and effect-specific computer programs aim at explaining the consequences of variations. Here, we discuss the different types of predictors and their applications. We review available variation databases and prediction methods useful for variation interpretation. We discuss how the performance of methods is assessed and summarize existing assessment studies. A brief introduction is provided to the principles of the methods developed for variation interpretation as well as guidelines for how to choose the optimal tools and where the field is heading in the future.
引用
收藏
页码:579 / 597
页数:19
相关论文
共 270 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Performance of Protein Disorder Prediction Programs on Amino Acid Substitutions [J].
Ali, Heidi ;
Urolagin, Siddhaling ;
Gurarslan, Omer ;
Vihinen, Mauno .
HUMAN MUTATION, 2014, 35 (07) :794-804
[3]   Classification of mismatch repair gene missense variants with PON-MMR [J].
Ali, Heidi ;
Olatubosun, Ayodeji ;
Vihinen, Mauno .
HUMAN MUTATION, 2012, 33 (04) :642-650
[4]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[5]  
ARAKAWA T, 1985, METHOD ENZYMOL, V114, P49
[6]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[7]   nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms [J].
Bao, L ;
Zhou, M ;
Cui, Y .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W480-W482
[8]   DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer [J].
Bashashati, Ali ;
Haffari, Gholamreza ;
Ding, Jiarui ;
Ha, Gavin ;
Lui, Kenneth ;
Rosner, Jamie ;
Huntsman, David G. ;
Caldas, Carlos ;
Aparicio, Samuel A. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2012, 13 (12) :R124
[9]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[10]   PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations [J].
Bendl, Jaroslav ;
Stourac, Jan ;
Salanda, Ondrej ;
Pavelka, Antonin ;
Wieben, Eric D. ;
Zendulka, Jaroslav ;
Brezovsky, Jan ;
Damborsky, Jiri .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (01)