Effect of deformation on evolution of Al3(Er,Zr) precipitates in Al-Er-Zr-based alloy

被引:18
作者
Leibner, Michal [1 ]
Vlach, Martin [1 ]
Kodetova, Veronika [1 ]
Kudrnova, Hana [1 ]
Vesely, Jozef [1 ]
Zikmund, Sebastien [1 ]
Cizek, Jakub [1 ]
Melikhova, Oksana [1 ]
Lukac, Frantisek [1 ,2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Ke Karlovu 3, Prague 12116, Czech Republic
[2] Czech Acad Sci, Inst Plasma Phys, Slovankou 3, Prague 18200, Czech Republic
关键词
AlErZr alloy; Al-3(Er; Zr); Coreshell; Precipitation hardening; TEM; Resistivity; 400; DEGREES-C; COARSENING RESISTANCE; MECHANICAL-PROPERTIES; PHASE-STABILITY; ALUMINUM; MICROSTRUCTURE; PARTICLES; HOMOGENIZATION; OPTIMIZATION; MODEL;
D O I
10.1016/j.matchar.2022.111781
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of cold-rolling and high-temperature aging on precipitation processes in an Al-Er-Zr alloy was investigated by microhardness and resistivity measurements, scanning electron microscopy, (scanning) transmission electron microscopy and X-ray diffraction. Many similarities with the Al-Sc-Zr system have been shown. Based on the obtained results, following decomposition sequence of supersaturated solid solution of the Al-Er-Zr-based alloy has been proposed: Er-rich clusters -> Al3Er phase -> layer rich in Zr (Al-3(Er,Zr) phase). Cold-rolling enhances the precipitation of Al3Er particles and accelerates the process identified as formation of the Zr-rich shell around the Er-rich core of Al-3(Er,Zr) precipitates. The effect of precipitation strengthening is negligible compared to the effect of work hardening as the supersaturation of Er in the Al matrix was probably considerably lowered by formation of Er-rich primary precipitates observed in the as-prepared state of the alloys studied. The core-shell structure of the Al-3(Er,Zr) particles formed after 2 and 4 h of aging at 600 ? was confirmed by Z contrast imaging and X-ray energy dispersive spectroscopy. The coherency strain-field around the precipitates is retained even after 4 h of aging at 600 ?. The Er/Zr atomic ratio of the precipitates was estimated based on their lattice constant.
引用
收藏
页数:12
相关论文
共 44 条
[41]   Effects of homogenization on precipitation of Al3(Er,Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy [J].
Wu, H. ;
Wen, S. P. ;
Huang, H. ;
Li, B. L. ;
Wu, X. L. ;
Gao, K. Y. ;
Wang, W. ;
Nie, Z. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 :313-322
[42]   Precipitation of L12-phase nano-particles in dilute Al-Er-Zr alloys from the first-principles [J].
Zhang, Chaomin ;
Yin, Dengfeng ;
Jiang, Yong ;
Wang, Yiren .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 162 :171-177
[43]   The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy [J].
Zhang, Yi ;
Gao, Kunyuan ;
Wen, Shengping ;
Huang, Hui ;
Nie, Zuoren ;
Zhou, Dejing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 610 :27-34
[44]   Determination of Er and Yb solvuses and trialuminide nucleation in Al-Er and Al-Yb alloys [J].
Zhang, Yi ;
Gao, Kunyuan ;
Wen, Shengping ;
Huang, Hui ;
Wang, Wei ;
Zhu, Zhaowei ;
Nie, Zuoren ;
Zhou, Dejing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 :526-534