Pre-processing techniques for resource allocation in the heterogeneous case

被引:1
作者
Valls, V
Perez, MA
Quintanilla, MS
机构
[1] Univ Valencia, Fac Matemat, Dept Estadist & Invest Operat, E-46100 Burjassot, Valencia, Spain
[2] Univ Valencia, Fac Ciencias Econ & Empresariales, Dept Econ Financiera & Matemat, Valencia 46010, Spain
关键词
resource allocation; preprocessing; macroactivities;
D O I
10.1016/S0377-2217(97)00340-8
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The Heterogeneous Resource Allocation Problem (HRAP) deals with the allocation of resources, whose units do not all share the same characteristics, to an established plan of activities. Each activity requires one or more units of each resource which possess particular characteristics, and the objective is to find the minimum number of resource units of each type, necessary to carry out all the activities within the plan, in such a way that two activities whose processing overlaps in time do not have the same resource unit assigned. The HRAP is an NP-Complete problem and it is possible to optimally solve medium-sized HRAP instances in a reasonable time. The objective of this work is to develop preprocessing techniques that enable an HRAP to be transformed into an equivalent HRAP of smaller size, thus increasing the size of HRAPs that can be solved exactly. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:470 / 491
页数:22
相关论文
共 50 条
[41]   Pre-processing of Retinal Images for Removal of Outliers [J].
Niharika Thakur ;
Mamta Juneja .
Wireless Personal Communications, 2021, 116 :739-765
[42]   Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India [J].
Duggal, Reena ;
Shukla, Suren ;
Chandra, Sarika ;
Shukla, Balvinder ;
Khatri, Sunil Kumar .
INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2016, 36 (04) :469-476
[43]   Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India [J].
Reena Duggal ;
Suren Shukla ;
Sarika Chandra ;
Balvinder Shukla ;
Sunil Kumar Khatri .
International Journal of Diabetes in Developing Countries, 2016, 36 :469-476
[44]   Pre-processing of Retinal Images for Removal of Outliers [J].
Thakur, Niharika ;
Juneja, Mamta .
WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (01) :739-765
[45]   INTRODUCING GRADUATE STUDENTS INTO PRE-PROCESSING TECHNIQUES FOR ADVANCED NUMERICAL MODELS: APPLICATION TO HYDRODYNAMIC MODELS [J].
Zarzuelo, C. ;
Lopez-Ruiz, A. ;
Diez-Minguito, M. ;
Monino, A. ;
Magana, P. ;
Ortega-Sanchez, M. .
EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2016, :6024-6030
[46]   Analysis of Different Pre-Processing Techniques to the Development of Machine Learning Predictors with Gene Expression Profiles [J].
Duran, Ian ;
Leandro, Roberto ;
Guevara-Coto, Jose .
IV JORNADAS COSTARRICENSES DE INVESTIGACION EN COMPUTACION E INFORMATICA (JOCICI 2019), 2019,
[47]   Review of pre-processing technologies for ice cores [J].
DU Wentao ;
KANG Shichang ;
QIN Xiang ;
SUN Weijun ;
ZHANG Yulan ;
LIU Yushuo ;
CHEN Jizu .
JournalofMountainScience, 2018, 15 (09) :1950-1960
[48]   Pre-processing Framework for Twitter Sentiment Classification [J].
Dritsas, Elias ;
Vonitsanos, Gerasimos ;
Livieris, Ioannis E. ;
Kanavo, Andreas ;
Ilias, Aristidis ;
Makris, Christos ;
Tsakalidis, Athanasios .
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS (AIAI 2019), 2019, 560 :138-149
[49]   Pre-processing approaches for imbalanced distributions in regression [J].
Branco, Paula ;
Torgo, Luis ;
Ribeiro, Rita P. .
NEUROCOMPUTING, 2019, 343 :76-99
[50]   Review of pre-processing technologies for ice cores [J].
Du Wen-tao ;
Kang Shi-chang ;
Qin Xiang ;
Sun Wei-jun ;
Zhang Yu-lan ;
Liu Yu-shuo ;
Chen Ji-zu .
JOURNAL OF MOUNTAIN SCIENCE, 2018, 15 (09) :1950-1960