A modified particle swarm optimization for combining forecasting

被引:0
|
作者
Feng, XY [1 ]
Wan, LM [1 ]
Liang, YC [1 ]
Sun, YF [1 ]
Lee, HP [1 ]
Wang, Y [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
来源
PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2004年
关键词
Particle Swarm Optimization (PSO); combining forecasting; hybrid algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A modified particle swarm optimization (PSO) algorithm is proposed. Linear constraints in the PSO are added to satisfy normalization conditions for different problems. A hybrid algorithm based on the modified PSO and combining forecasting is presented. Combining forecasting can improve the forecasting accuracy through combining different forecasting methods. The effectiveness of the algorithm is demonstrated through the prediction on the sunspots and the stocks data. Simulated results show that the hybrid algorithm can improve the forecasting accuracy to a great extent.
引用
收藏
页码:2384 / 2389
页数:6
相关论文
共 50 条
  • [31] A modified particle swarm optimization predicted by velocity
    Cui, Zhihua
    Zeng, Jianchao
    GECCO 2005: Genetic and Evolutionary Computation Conference, Vols 1 and 2, 2005, : 277 - 278
  • [32] The modified Particle Swarm Optimization for phase balancing
    Tuppadung, Yutthapong
    Kurutach, Werasak
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 778 - +
  • [33] A modified particle swarm optimization algorithm and application
    Zheng, Sheng-Fu
    Hu, Shan-Li
    Su, She-Xiong
    Lin, Chao-Feng
    Lai, Xian-Wei
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 945 - 951
  • [34] Modified particle swarm optimization for search missions
    Pitre, Ryan R.
    PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 362 - 365
  • [35] Modified Particle Swarm Optimization With Effective Guides
    Karim, Aasam Abdul
    Mat Isa, Nor Ashidi
    Lim, Wei Hong
    IEEE ACCESS, 2020, 8 : 188699 - 188725
  • [36] Combining Penalty Function with Modified Chicken Swarm Optimization for Constrained Optimization
    Chen, Y. L.
    He, P. L.
    Zhang, Y. H.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 1899 - 1907
  • [37] A modified particle swarm optimization for solving global optimization problems
    He, Yi-Chao
    Liu, Kun-Qi
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2173 - +
  • [38] Optimization of PEMFC model parameters with a modified particle swarm optimization
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) : 1258 - 1265
  • [39] A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting
    Xu, Xinghan
    Ren, Weijie
    APPLIED SOFT COMPUTING, 2022, 116
  • [40] Forecasting of individual electricity consumption using Optimized Gradient Boosting Regression with Modified Particle Swarm Optimization
    Sepulveda, Luis F. M.
    Diniz, Petterson S.
    Diniz, Joao O. B.
    Netto, Stelmo M. B.
    Cipriano, Carolina L. S.
    Araujo, Alexandre C.
    Lemos, Victor H. B.
    Pessoa, Alexandre C. P.
    Quintanilha, Darlan B. P.
    Almeida, Joao D. S.
    Silva, Aristofanes C.
    Paiva, Anselmo C.
    Braz, Geraldo
    Silva, Marcia I. A.
    Monteiro, Eliana M. G.
    Silva, Italo F. S.
    Fernandes, Eduardo C.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 105