ON SOLVING A BINARY QUADRATIC DIOPHANTINE EQUATION

被引:1
作者
Matthews, Keith R. [1 ]
Robertson, John P. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld, Australia
关键词
general binary quadratic equation; generalized Pell equation; Diophantine equation;
D O I
10.1216/rmj.2021.51.1369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We look at methods for solving the Diophantine equation ax(2) +bxy + cy(2) + dx + ey + f = 0 for which Delta = b(2) - 4ac > 0 and Delta is not a square. The methods we use transform this equation to one of the form AX(2) + BXY + CY2 = N. We give upper limits on the number of solutions to the latter equation that need to be reviewed to determine all solutions to the original equation. These upper limits are substantially smaller than those generally given in the literature. We also discuss ways to compactly represent all solutions to the original equation.
引用
收藏
页码:1369 / 1385
页数:17
相关论文
共 17 条
  • [1] [Anonymous], 2002, J THEOR NOMBRES BORD
  • [2] [Anonymous], 1989, Introduction to Number Theory
  • [3] [Anonymous], 1938, Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer Grenzgebiete
  • [4] BUELL D. A., 1989, Binary Quadratic Forms. Classical Theory and Modern Computations
  • [5] Chrystal G., 1961, ALGEBRA ELEMENTARY T
  • [6] Dickson L. E., 1999, Diophantine Analysis, VII
  • [7] Halter-Koch F., 2014, J COMB NUMBER THEORY, V6, P17
  • [8] Hua L. K., 1982, INTRO NUMBER THEORY
  • [9] Hurwitz A., 1986, LECT NUMBER THEORY
  • [10] Jacobson MJ, 2009, CMS BOOKS MATH, P1