Bone suppression for chest X-ray image using a convolutional neural filter

被引:19
作者
Matsubara, Naoki [1 ]
Teramoto, Atsushi [1 ]
Saito, Kuniaki [1 ]
Fujita, Hiroshi [2 ]
机构
[1] Fujita Hlth Univ, Grad Sch Hlth Sci, 1-98 Dengakugakubo,Kutsukake Cho, Toyoake, Aichi 4701192, Japan
[2] Gifu Univ, Dept Elect Elect Sr Comp Engn, Fac Engn, 1-1 Yanagido, Gifu, Gifu 5011194, Japan
关键词
Chest X-ray; Bone suppression; Lung; Nodule; Convolutional neural network; Image processing; COMPUTER-AIDED DIAGNOSIS; AUTOMATED DETECTION; LUNG NODULES; RADIOGRAPHS; NETWORK; CLASSIFICATION; SEGMENTATION; DATABASE; SCHEME; RIBS;
D O I
10.1007/s13246-019-00822-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Chest X-rays are used for mass screening for the early detection of lung cancer. However, lung nodules are often overlooked because of bones overlapping the lung fields. Bone suppression techniques based on artificial intelligence have been developed to solve this problem. However, bone suppression accuracy needs improvement. In this study, we propose a convolutional neural filter (CNF) for bone suppression based on a convolutional neural network which is frequently used in the medical field and has excellent performance in image processing. CNF outputs a value for the bone component of the target pixel by inputting pixel values in the neighborhood of the target pixel. By processing all positions in the input image, a bone-extracted image is generated. Finally, bone-suppressed image is obtained by subtracting the bone-extracted image from the original chest X-ray image. Bone suppression was most accurate when using CNF with six convolutional layers, yielding bone suppression of 89.2%. In addition, abnormalities, if present, were effectively imaged by suppressing only bone components and maintaining soft-tissue. These results suggest that the chances of missing abnormalities may be reduced by using the proposed method. The proposed method is useful for bone suppression in chest X-ray images.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 43 条
[1]   Computer-aided diagnosis in chest radiography: Results of large-scale observer tests at the 1996-2001 RSNA scientific assemblies [J].
Abe, H ;
MacMahon, H ;
Engelmann, R ;
Li, Q ;
Shiraishi, J ;
Katsuragawa, S ;
Aoyama, M ;
Ishida, T ;
Ashizawa, K ;
Metz, CE ;
Doi, K .
RADIOGRAPHICS, 2003, 23 (01) :255-265
[2]  
[Anonymous], 2018, CANC FACTS FIG
[3]  
[Anonymous], 2017, IEEE CVPR
[4]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]   Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Samala, Ravi K. ;
Chan, Heang-Ping ;
Caoili, Elaine M. ;
Cohan, Richard H. .
MEDICAL PHYSICS, 2016, 43 (04) :1882-1896
[7]   Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing [J].
Chen, Sheng ;
Zhong, Sikai ;
Yao, Liping ;
Shang, Yanfeng ;
Suzuki, Kenji .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (06) :2283-2301
[8]   Separation of Bones From Chest Radiographs by Means of Anatomically Specific Multiple Massive-Training ANNs Combined With Total Variation Minimization Smoothing [J].
Chen, Sheng ;
Suzuki, Kenji .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) :246-257
[9]   Bone Suppression of Chest Radiographs With Cascaded Convlutional Networks in Wavelet Domain [J].
Chen, Yingyin ;
Gou, Xiaofang ;
Feng, Xiuxia ;
Liu, Yunbi ;
Qin, Genggeng ;
Feng, Qianjin ;
Yang, Wei ;
Chen, Wufan .
IEEE ACCESS, 2019, 7 :8346-8357
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057