Anderson localization in a disordered chain with a finite nonlinear response time

被引:11
作者
Caetano, R. A. [1 ]
de Moura, F. A. B. F. [1 ]
Lyra, M. L. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
关键词
EVOLUTION; WAVES;
D O I
10.1140/epjb/e2011-20006-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we investigate the competition of disorder, nonlinearity and non-adiabatic process on the wave packet dynamics in 1D. We follow the time evolution of the second moment of the wave packet distribution to characterize its spreading behavior. In order to describe the dynamical behavior of one-electron wave packets, we solve a discrete nonlinear Schrodinger equation which effectively takes into account a diagonal disorder and a nonlinear contribution. Going beyond the adiabatic regime, we consider that the nonlinearity relaxes in time according to a Debye-like law. In the adiabatic regime, it has been recently demonstrated that the interplay of disorder and nonlinearity leads to a sub-diffusive spread of the wave packet. Here, we numerically demonstrate that no sub-diffusive spreading of the second moment of the wave packet distribution takes place when the finite response time of the nonlinearity is taken into account.
引用
收藏
页码:321 / 324
页数:4
相关论文
共 32 条
[1]  
Abhishek D, 2008, PHYS REV LETT, V100
[2]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[3]   Exploring the phase space of the quantum δ-kicked accelerator [J].
Behinaein, G. ;
Ramareddy, V. ;
Ahmadi, P. ;
Summy, G. S. .
PHYSICAL REVIEW LETTERS, 2006, 97 (24)
[4]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[5]   Suppression of transport of an interacting elongated Bose-Einstein condensate in a random potential -: art. no. 170409 [J].
Clément, D ;
Varón, AF ;
Hugbart, M ;
Retter, JA ;
Bouyer, P ;
Sanchez-Palencia, L ;
Gangardt, DM ;
Shlyapnikov, GV ;
Aspect, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[6]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[7]   Time evolution of models described by a one-dimensional discrete nonlinear Schrodinger equation [J].
Datta, PK ;
Kundu, K .
PHYSICAL REVIEW B, 1996, 53 (22) :14929-14936
[8]   Electron self-trapping and self-focusing in periodic chains with a finite nonlinear response time [J].
de Moura, F. A. B. F. ;
Vidal, E. J. G. G. ;
Gleria, Iram ;
Lyra, M. L. .
PHYSICS LETTERS A, 2010, 374 (40) :4152-4155
[9]   Wave-Packet Dynamics in Chains with Delayed Electronic Nonlinear Response [J].
de Moura, F. A. B. F. ;
Gleria, Iram ;
dos Santos, I. F. ;
Lyra, M. L. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[10]   Effects of nonlinearity on wave-packet dynamics in square and honeycomb lattices [J].
Dias, W. S. ;
Lyra, M. L. ;
de Moura, F. A. B. F. .
PHYSICAL REVIEW B, 2010, 82 (23)