Efficient Laplacian spectral density computations for networks with arbitrary degree distributions

被引:2
作者
Guzman, Grover E. C. [1 ]
Stadler, Peter F. [2 ,3 ]
Fujita, Andre [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Leipzig, Bioinformat Grp, Dept Comp Sci, Hartelstr 16-18, D-04107 Leipzig, Germany
[3] Univ Leipzig, Interdisciplinary Ctr Bioinformat, Hartelstr 16-18, D-04107 Leipzig, Germany
基金
巴西圣保罗研究基金会;
关键词
spectral density; Laplacian matrix; normalized Laplacian matrix; configuration model tree-like network; NORMALIZED LAPLACIANS; ITERATION METHOD; EIGENVALUES; GRAPHS;
D O I
10.1017/nws.2021.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The network Laplacian spectral density calculation is critical in many fields, including physics, chemistry, statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks. Therefore, we present two efficient alternatives: one based on the network's edges and another on the degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral density using only the degree distribution. The computational complexities are O(vertical bar E vertical bar log (n)) and O(n), respectively, in contrast to O(n(3)) of the diagonalization method, where n is the number of vertices and vertical bar E vertical bar is the number of edges.
引用
收藏
页码:312 / 327
页数:16
相关论文
共 51 条
[1]   Search in power-law networks [J].
Adamic, L.A. ;
Lukose, R.M. ;
Puniyani, A.R. ;
Huberman, B.A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (4 II) :461351-461358
[2]   Power-Law distribution of the World Wide Web [J].
Adamic, LA ;
Huberman, BA ;
Barabási, AL ;
Albert, R ;
Jeong, H ;
Bianconi, G .
SCIENCE, 2000, 287 (5461)
[3]   Tree-like structure in large social and information networks [J].
Adcock, Aaron B. ;
Sullivan, Blair D. ;
Mahoney, Michael W. .
2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, :1-10
[4]   The exact Laplacian spectrum for the Dyson hierarchical network [J].
Agliari, Elena ;
Tavani, Flavia .
SCIENTIFIC REPORTS, 2017, 7
[5]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[6]   Dynamical and spectral properties of complex networks [J].
Almendral, Juan A. ;
Diaz-Guilera, Albert .
NEW JOURNAL OF PHYSICS, 2007, 9
[7]  
[Anonymous], 2018, [No title captured], P44
[8]  
[Anonymous], 2006, P EUR C COMPL SYST
[9]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[10]  
Bollobas B, 1998, Graduate Texts in Mathematics, V184, DOI 10.1007/978-1-4612-0619-4