Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations

被引:233
作者
He, YN [1 ]
机构
[1] Xian Jiaotong Univ, Fac Sci, Xian 710049, Peoples R China
关键词
Navier-Stokes equations; mixed finite element; two-level method; Crank-Nicolson extrapolation;
D O I
10.1137/S0036142901385659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete two-level finite element method (the two-level method) is presented for solving the two-dimensional time-dependent Navier-Stokes problem. The method requires a Crank-Nicolson extrapolation solution (u(H,tau0), p(H,tau0)) on a spatial-time coarse grid J(H,tau0) and a backward Euler solution (u(h,tau), p(h,tau)) on a space-time fine grid J(h,tau). The error estimates of optimal order of the discrete solution for the two-level method are derived. Compared with the standard Crank-Nicolson extrapolation method (the one-level method) based on a space-time fine grid J(h,tau), the two-level method is of the error estimates of the same order as the one-level method in the H-1-norm for velocity and the L-2-norm for pressure. However, the two-level method involves much less work than the one-level method.
引用
收藏
页码:1263 / 1285
页数:23
相关论文
共 35 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   NONLINEAR GALERKIN METHODS AND MIXED FINITE-ELEMENTS - 2-GRID ALGORITHMS FOR THE NAVIER-STOKES EQUATIONS [J].
AMMI, AAO ;
MARION, M .
NUMERISCHE MATHEMATIK, 1994, 68 (02) :189-213
[3]  
[Anonymous], 1988, APPL MATH SCI
[4]  
[Anonymous], 1987, FINITE ELEMENT METHO
[5]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[6]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[7]   A CONFORMING FINITE-ELEMENT METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J].
BERNARDI, C ;
RAUGEL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :455-473
[8]   A PRIORI L2 ERROR-ESTIMATES FOR FINITE-ELEMENT METHODS FOR NONLINEAR DIFFUSION-EQUATIONS WITH MEMORY [J].
CANNON, JR ;
LIN, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :595-607
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&