A generic scheme for progressive point cloud coding

被引:146
作者
Huang, Yan [1 ]
Peng, Jingliang [2 ]
Kuo, C. -C. Jay [3 ,4 ]
Gopi, M. [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[2] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510275, Peoples R China
[3] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[4] Univ So Calif, Inst Signal & Image Proc, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
progressive coding; LOD; compression; octree; 3D point cloud;
D O I
10.1109/TVCG.2007.70441
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a generic point cloud encoder that provides a unified framework for compressing different attributes of point samples corresponding to 3D objects with an arbitrary topology. In the proposed scheme, the coding process is led by an iterative octree cell subdivision of the object space. At each level of subdivision, the positions of point samples are approximated by the geometry centers of all tree-front cells, whereas normals and colors are approximated by their statistical average within each of the tree-front cells. With this framework, we employ attribute-dependent encoding techniques to exploit the different characteristics of various attributes. All of these have led to a significant improvement in the rate-distortion (R-D) performance and a computational advantage over the state of the art. Furthermore, given sufficient levels of octree expansion, normal space partitioning, and resolution of color quantization, the proposed point cloud encoder can be potentially used for lossless coding of 3D point clouds.
引用
收藏
页码:440 / 453
页数:14
相关论文
共 37 条
[1]  
Alliez P, 2001, COMP GRAPH, P195, DOI 10.1145/383259.383281
[2]  
ALLIEZ P, 2001, P EUR, P480
[3]  
Bajaj C. L., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P307, DOI 10.1109/VISUAL.1999.809902
[4]   Single resolution compression of arbitrary triangular meshes with properties [J].
Bajaj, CL ;
Pascucci, V ;
Zhuang, GZ .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 14 (1-3) :167-186
[5]  
BERG M, 1998, COMPUTATIONAL GEOMET
[6]  
BOTSCH M, 2002, P 13 EUR WORKSH REND, P53
[7]  
Cohen-Or D., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P67
[8]   Progressive point set surfaces [J].
Fleishman, S ;
Cohen-Or, D ;
Alexa, M ;
Silva, CT .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (04) :997-1011
[9]  
Gandoin PM, 2002, ACM T GRAPHIC, V21, P372, DOI 10.1145/566570.566591
[10]  
GERVAUTZ M, 1990, GRAPHICS GEMS, V1, P287