A semilnear singular problem for the fractional laplacian

被引:2
作者
Godoy, Tomas [1 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Ciudad Univ, RA-5000 Cordoba, Argentina
来源
AIMS MATHEMATICS | 2018年 / 3卷 / 04期
关键词
singular elliptic problems; positive solutions; fractional Laplacian; sub and supersolutions; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; CONVECTION; BEHAVIOR;
D O I
10.3934/Math.2018.4.464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem (-Delta)(s) u = -au(-gamma) + lambda h in Omega, u = 0 in R-n \Omega, u > 0 in Omega; where 0 < s < 1; Omega is a bounded domain in R-n with C-1,C-1 boundary, a and h are nonnegative bounded functions, h not equivalent to 0; and lambda > 0 : We prove that if gamma is an element of 2 (0; s) then, for lambda positive and large enough, there exists a weak solution such that c(1)d(Omega)(s) <= u <= c(2)d(Omega)(s) in Omega for some positive constants c(1) and c(2) : A somewhat more general result is also given.
引用
收藏
页码:464 / 484
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 2007, Handbook of Differential Equations: Stationary Partial Differential Equations. Handbook of Differential Equations
[2]   Singular solutions of a nonlinear elliptic equation in a punctured domain [J].
Bachar, Imed ;
Maagli, Habib ;
Radulescu, Vicentiu D. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (94) :1-19
[3]   Semilinear problems for the fractional laplacian with a singular nonlinearity [J].
Barrios, Begona ;
De Bonis, Ida ;
Medina, Maria ;
Peral, Ireneo .
OPEN MATHEMATICS, 2015, 13 :390-407
[4]   Estimates on Green functions and Poisson kernels for symmetric stable processes [J].
Chen, ZQ ;
Song, RM .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :465-501
[5]   Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type [J].
Cîrstea, F ;
Ghergu, M ;
Radulescu, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (04) :493-508
[6]   A GLOBAL ESTIMATE FOR THE GRADIENT IN A SINGULAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
DELPINO, MA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 122 :341-352
[7]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[8]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[9]   On Very Weak Positive Solutions to Some Semilinear Elliptic Problems With Simultaneous Singular Nonlinear and Spatial Dependence Terms [J].
Diaz, J. I. ;
Hernandez, J. ;
Rakotoson, J. M. .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) :233-245
[10]   AN ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J].
DIAZ, JI ;
MOREL, JM ;
OSWALD, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1987, 12 (12) :1333-1344