Latent space data assimilation by using deep learning

被引:38
作者
Peyron, Mathis [1 ,2 ,3 ]
Fillion, Anthony [1 ,4 ]
Gurol, Selime [1 ,3 ]
Marchais, Victor [1 ]
Gratton, Serge [1 ,4 ]
Boudier, Pierre [1 ,5 ]
Goret, Gael [2 ]
机构
[1] Artificial & Nat Intelligence Toulouse Inst ANITI, Toulouse, France
[2] Atos BDS R&D AI4Sim, Grenoble, France
[3] CERFACS, 42 Ave Gaspard Coriolis, F-31100 Toulouse, France
[4] Univ Toulouse, UFTMIP, Toulouse, France
[5] NVIDIA, Santa Clara, CA USA
关键词
autoencoders; data assimilation; deep learning; latent space; Lorenz; 96; surrogate model; ENSEMBLE KALMAN SMOOTHER; UNSTABLE SUBSPACE; ADAPTIVE OBSERVATIONS; PART I; FILTER; ERROR; AUTOENCODERS; STANDARD; CYCLE; GAME;
D O I
10.1002/qj.4153
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Performing data assimilation (DA) at low cost is of prime concern in Earth system modeling, particularly in the era of Big Data, where huge quantities of observations are available. Capitalizing on the ability of neural network techniques to approximate the solution of partial differential equations (PDEs), we incorporate deep learning (DL) methods into a DA framework. More precisely, we exploit the latent structure provided by autoencoders (AEs) to design an ensemble transform Kalman filter with model error (ETKF-Q) in the latent space. Model dynamics are also propagated within the latent space via a surrogate neural network. This novel ETKF-Q-Latent (ETKF-Q-L) algorithm is tested on a tailored instructional version of Lorenz 96 equations, named the augmented Lorenz 96 system, which possesses a latent structure that accurately represents the observed dynamics. Numerical experiments based on this particular system evidence that the ETKF-Q-L approach both reduces the computational cost and provides better accuracy than state-of-the-art algorithms such as the ETKF-Q.
引用
收藏
页码:3759 / 3777
页数:19
相关论文
共 50 条
[1]   A latent space method with maximum entropy deep reinforcement learning for data assimilation [J].
Zhang, Jinding ;
Zhang, Kai ;
Wang, Zhongzheng ;
Zhou, Wensheng ;
Liu, Chen ;
Zhang, Liming ;
Ma, Xiaopeng ;
Liu, Piyang ;
Bian, Ziwei ;
Kang, Jinzheng ;
Yang, Yongfei ;
Yao, Jun .
GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
[2]   Deep Data Assimilation: Integrating Deep Learning with Data Assimilation [J].
Arcucci, Rossella ;
Zhu, Jiangcheng ;
Hu, Shuang ;
Guo, Yi-Ke .
APPLIED SCIENCES-BASEL, 2021, 11 (03) :1-21
[3]   Latent-space inversion (LSI): a deep learning framework for inverse mapping of subsurface flow data [J].
Razak, Syamil Mohd ;
Jiang, Anyue ;
Jafarpour, Behnam .
COMPUTATIONAL GEOSCIENCES, 2022, 26 (01) :71-99
[4]   Harnessing Generative Deep Learning for Enhanced Ensemble Data Assimilation [J].
Foroumandi, Ehsan ;
Moradkhani, Hamid .
WATER RESOURCES RESEARCH, 2025, 61 (07)
[5]   Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning [J].
Hammoud, Mohamad Abed El Rahman ;
Raboudi, Naila ;
Titi, Edriss S. ;
Knio, Omar ;
Hoteit, Ibrahim .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (08)
[6]   Visualization and Interpretation of Latent Space in Deep Learning [J].
Dai, Mizuki ;
Jin'no, Kenya .
HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION, PT II, HIMI 2024, 2024, 14690 :14-23
[7]   The deep latent space particle filter for real-time data assimilation with uncertainty quantification [J].
Mucke, Nikolaj T. ;
Bohte, Sander M. ;
Oosterlee, Cornelis W. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[8]   Improving Deep Learning for Maritime Remote Sensing through Data Augmentation and Latent Space [J].
Sobien, Daniel ;
Higgins, Erik ;
Krometis, Justin ;
Kauffman, Justin ;
Freeman, Laura .
MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (03) :665-687
[9]   An Online Paleoclimate Data Assimilation With a Deep Learning-Based Network [J].
Sun, Haohao ;
Lei, Lili ;
Liu, Zhengyu ;
Ning, Liang ;
Tan, Zhe-Min .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2025, 17 (06)
[10]   A hybrid deep learning and data assimilation method for model error estimation [J].
Peng, Ziyi ;
Lei, Lili ;
Tan, Zhe-Min .
SCIENCE CHINA-EARTH SCIENCES, 2024, 67 (12) :3655-3670