Mesenchymal stem cell-derived exosomes inhibit the VEGF-A expression in human retinal vascular endothelial cells induced by high glucose

被引:3
|
作者
He, Guang-Hui [1 ,2 ,3 ]
Ma, Ying-Xue [1 ,2 ]
Dong, Meng [1 ,2 ]
Chen, Song [1 ,2 ]
Wang, Yu-Chuan [1 ,2 ]
Gao, Xiang [2 ,4 ]
Wu, Bin [1 ,2 ]
Wang, Jian [1 ,2 ]
Wang, Jun-Hua [1 ,2 ]
机构
[1] Tianjin Med Univ, Clin Coll Ophthalmol, Tianjin 300070, Peoples R China
[2] Tianjin Eye Hosp, Tianjin Eye Inst, Tianjin Key Lab Ophthalmol & Visual Sci, Tianjin 300020, Peoples R China
[3] Xinjiang Prod & Construct Corps Hosp, Ophthalm Ctr, Urumqi 830002, Xinjiang Uygur, Peoples R China
[4] Nankai Univ, Med Coll, Tianjin 300000, Peoples R China
关键词
mesenchymal stem cells; exosomes; retinal vascular endothelial cells; vascular endothelial growth factor A; coculture; ANGIOGENESIS; INJURY;
D O I
10.18240/ijo.2021.12.03
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
AIM: To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor A (VEGF-A) in human retinal vascular endothelial cells (HRECs). METHODS: Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy, Western blotting and nanoparticle tracking analysis. HRECs were randomly divided into a normal control group (group A), a high glucose model group (group B), a high glucose group with 25 mu g/mL (group C), 50 mu g/mL (group D), and 100 mu g/mL exosomes (group E). Twenty-four hours after coculture, the cell proliferation rate was detected using flow cytometry, and the VEGF-A level was detected using immunofluorescence. After coculture 8, 16, and 24h, the expression levels of VEGF-A in each group were detected using PCR and Western blots. RESULTS: The characteristic morphology (membrane structured vesicles) and size (diameter between 50 and 200 nm) were observed under transmission electron microscopy. The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis (NTA). The exosomal markers CD9, CD63, and HSP70 were strongly detected. The proliferation rate of the cells in group B increased after 24h of coculture. Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes (F=39.03, P<0.01). The upregulation of VEGF-A protein (group C: F=7.96; group D: F=17.29; group E: F=11.89; 8h: F=9.45; 16h: F=12.86; 24h: F=42.28, P<0.05) and mRNA (group C: F=4.137; group D: F=13.64; group E: F=22.19; 8h: F=7.253; 16h: F=16.98; 24h: F=22.62, P<0.05) in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes (P<0.05). CONCLUSION: hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.
引用
收藏
页码:1820 / 1827
页数:8
相关论文
共 50 条
  • [21] Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis
    Yu Zhu
    Yuchen Wang
    Bizeng Zhao
    Xin Niu
    Bin Hu
    Qing Li
    Juntao Zhang
    Jian Ding
    Yunfeng Chen
    Yang Wang
    Stem Cell Research & Therapy, 8
  • [22] Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury
    Zhou, Shaoting
    Gao, Beiyao
    Sun, Chengcheng
    Bai, Yulong
    Cheng, Dandan
    Zhang, Ye
    Li, Xutong
    Zhao, Jing
    Xu, Dongsheng
    NEUROSCIENCE, 2020, 441 : 184 - 196
  • [23] Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells
    White, Mark P.
    Rufaihah, Abdul J.
    Liu, Lei
    Ghebremariam, Yohannes T.
    Ivey, Kathryn N.
    Cooke, John P.
    Srivastava, Deepak
    STEM CELLS, 2013, 31 (01) : 92 - 103
  • [24] Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Accelerate Skin Cell Proliferation
    Kim, Soo
    Lee, Seul Ki
    Kim, Hyunjung
    Kim, Tae Min
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (10)
  • [25] Human Stem Cell-Derived Endothelial Cells Suppress Automaticity of Stem Cell-Derived Cardiomyocytes
    Garbern, Jessica C.
    Li, Qiang
    Liu, Ren
    Juncosa, Estela Mancheno
    Lin, Zuwan
    Elwell, Hannah L.
    Aoyama, Junya
    Morgan, Sokol K.
    Liu, Jia
    Lee, Richard T.
    CIRCULATION, 2021, 144
  • [26] The effect of human umbilical cord mesenchymal stem cell-derived exosomes on diabetic retinal neurodegeneration in a rat model
    Fu, Yan
    Xie, Tian-Hao
    Zhang, Yue-Ling
    Gu, Zhao-Hui
    JOURNAL OF CHEMICAL NEUROANATOMY, 2022, 126
  • [27] Mesenchymal Stem Cell-Derived Exosomes Ameliorate Doxorubicin-Induced Cardiotoxicity
    Ali, Sawdah A.
    Singla, Dinender K.
    PHARMACEUTICALS, 2024, 17 (01)
  • [28] Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells
    Rajasingh, Sheeja
    Sigamani, Vinoth
    Selvam, Vijay
    Gurusamy, Narasimman
    Kirankumar, Shivaani
    Vasanthan, Jayavardini
    Rajasingh, Johnson
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (18) : 8904 - 8919
  • [29] Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells
    Fan, Xuehui
    Cyganek, Lukas
    Nitschke, Katja
    Uhlig, Stefanie
    Nuhn, Philipp
    Bieback, Karen
    Duerschmied, Daniel
    El-Battrawy, Ibrahim
    Zhou, Xiaobo
    Akin, Ibrahim
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [30] Human Induced Pluripotent Stem Cell-derived Endothelial Cells Exhibit Heterogeneity
    Jalil, Rufaihah A.
    Nguyen, Ha N.
    Huang, Ngan F.
    Hunter, Arwen L.
    Pera, Renee R.
    Cooke, John P.
    CIRCULATION, 2009, 120 (18) : S1092 - S1092