Tree-like carbon nanostructures generated by the action of atomic hydrogen on glassy carbon

被引:11
作者
Terranova, ML
Sessa, V
Rossi, M
机构
[1] Univ Roma Tor Vergata, Dipartimento Sci & Tecnol Chim, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Unita INSTM, I-00133 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Energet, I-00161 Rome, Italy
[4] Univ Roma La Sapienza, INFM, I-00161 Rome, Italy
关键词
D O I
10.1016/S0009-2614(01)00143-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-planar graphitic nanostructures have been generated by the reaction of atomic hydrogen with glassy carbon. The process allowed us to generate unconventional graphite-based tree-like deposits protruding from the tips of the etched glassy carbon surface. An individual tree-like deposit has dimensions ranging between 0.5 and 4 mum and is a porous aggregate of polyhedral nanoparticles and curled nanofilaments. Micro-Raman spectroscopy and electron diffraction have been used to monitor the structural modifications induced in the material. The Raman analysis of the bonding arrangement in the tree-like deposits indicates that exclusively sp(2)-coordinated C atoms form these unusual carbon structures. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:405 / 409
页数:5
相关论文
共 15 条
[1]   Growth of carbon micro-trees - Carbon deposition under extreme conditions causes tree-like structures to spring up. [J].
Ajayan, PM ;
Nugent, JM ;
Siegel, RW ;
Wei, B ;
Kohler-Redlich, P .
NATURE, 2000, 404 (6775) :243-243
[2]   RAMAN-SPECTROSCOPY OF CLOSED-SHELL CARBON PARTICLES [J].
BACSA, WS ;
DEHEER, WA ;
UGARTE, D ;
CHATELAIN, A .
CHEMICAL PHYSICS LETTERS, 1993, 211 (4-5) :346-352
[3]  
Dresselhaus M. S., 1999, ANAL APPL RAMAN SPEC
[4]   VIBRATIONAL-MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY [J].
EKLUND, PC ;
HOLDEN, JM ;
JISHI, RA .
CARBON, 1995, 33 (07) :959-972
[5]   RAMAN STUDIES OF CARBON NANOTUBES [J].
HIURA, H ;
EBBESEN, TW ;
TANIGAKI, K ;
TAKAHASHI, H .
CHEMICAL PHYSICS LETTERS, 1993, 202 (06) :509-512
[6]   Nano-aggregates of single-walled graphitic carbon nano-horns [J].
Iijima, S ;
Yudasaka, M ;
Yamada, R ;
Bandow, S ;
Suenaga, K ;
Kokai, F ;
Takahashi, K .
CHEMICAL PHYSICS LETTERS, 1999, 309 (3-4) :165-170
[7]  
JENKINS GM, 1976, POLYMERIC CARBON CAR
[8]   Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J].
Journet, C ;
Maser, WK ;
Bernier, P ;
Loiseau, A ;
delaChapelle, ML ;
Lefrant, S ;
Deniard, P ;
Lee, R ;
Fischer, JE .
NATURE, 1997, 388 (6644) :756-758
[9]   RESONANCE RAMAN AND INFRARED-SPECTROSCOPY OF CARBON NANOTUBUES [J].
KASTNER, J ;
PICHLER, T ;
KUZMANY, H ;
CURRAN, S ;
BLAU, W ;
WELDON, DN ;
DELAMESIERE, M ;
DRAPER, S ;
ZANDBERGEN, H .
CHEMICAL PHYSICS LETTERS, 1994, 221 (1-2) :53-58
[10]   CHARACTERIZATION OF DIAMOND FILMS BY RAMAN-SPECTROSCOPY [J].
KNIGHT, DS ;
WHITE, WB .
JOURNAL OF MATERIALS RESEARCH, 1989, 4 (02) :385-393