Edge-primitive tetravalent graphs

被引:11
作者
Guo, Song-Tao [1 ]
Feng, Yan-Quan [1 ]
Li, Cai Heng [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Edge-primitive graph; Symmetric graph; s-Transitive graph; MAXIMAL-SUBGROUPS; PRINCIPAL; 3-BLOCKS; CONJECTURE;
D O I
10.1016/j.jctb.2014.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is edge-primitive if its automorphism group acts primitively on edges. In 1973 Weiss [28] determined edge-primitive cubic graphs. In this paper, we classify edge-primitive tetravalent graphs. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 137
页数:14
相关论文
共 34 条
[21]   THE MAXIMAL-SUBGROUPS OF 2F4(Q2) [J].
MALLE, G .
JOURNAL OF ALGEBRA, 1991, 139 (01) :52-69
[22]   Determination of the ordinary and modular ternary linear groups [J].
Mitchell, HH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1911, 12 :207-242
[23]   Isometries and extra special Sylow groups of order p3 [J].
Narasaki, Ryo ;
Uno, Katsuhiro .
JOURNAL OF ALGEBRA, 2009, 322 (06) :2027-2068
[24]  
Park S.A., 1986, J KOREAN MATH SOC, V23, P201
[25]   A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4,2) [J].
Potocnik, Primoz .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1323-1336
[26]  
Praeger C., 1997, LONDON MATH SOC LECT, P65
[27]  
Suzuki M., 1982, GROUP THEORY 1
[28]   PRESENTATIONS FOR (G, S)-TRANSITIVE GRAPHS OF SMALL VALENCY [J].
WEISS, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 :7-20
[29]  
Weiss R., 1985, ALGEBRAS GROUPS GEOM, V2, P555
[30]  
Weiss R. M., 1973, Journal of Combinatorial Theory, Series B, V15, P269, DOI 10.1016/0095-8956(73)90041-5