Edge-primitive tetravalent graphs

被引:11
作者
Guo, Song-Tao [1 ]
Feng, Yan-Quan [1 ]
Li, Cai Heng [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Edge-primitive graph; Symmetric graph; s-Transitive graph; MAXIMAL-SUBGROUPS; PRINCIPAL; 3-BLOCKS; CONJECTURE;
D O I
10.1016/j.jctb.2014.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is edge-primitive if its automorphism group acts primitively on edges. In 1973 Weiss [28] determined edge-primitive cubic graphs. In this paper, we classify edge-primitive tetravalent graphs. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 137
页数:14
相关论文
共 34 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Conway H., 1985, ATLAS FINITE GROUPS
[3]   MAXIMAL-SUBGROUPS OF G2(2N) [J].
COOPERSTEIN, BN .
JOURNAL OF ALGEBRA, 1981, 70 (01) :23-36
[4]  
Dixon J.D., 1996, Grad. Texts in Math., V163
[5]  
Feit W., 1962, NAGOYA MATH J, V21, P185, DOI [DOI 10.1017/S0027763000023825, 10.1017/S0027763000023825]
[6]   MAXIMAL SUBGROUPS OF PSP4(2N) CONTAINING CENTRAL ELATIONS OR NONCENTERED SKEW ELATIONS [J].
FLESNER, DE .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :247-268
[7]   On finite edge-primitive and edge-quasiprimitive graphs [J].
Giudici, Michael ;
Li, Cai Heng .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) :275-298
[8]  
Gorenstein D., 1982, FINITE SIMPLE GROUPS
[9]  
GROSS F, 1986, P LOND MATH SOC, V52, P464
[10]  
Hartley RW, 1926, ANN MATH, V27, P140