Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations

被引:15
作者
Zheng, Xiangcheng [1 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, 1523 Greene St, Columbia, SC 29208 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 01期
基金
美国国家科学基金会;
关键词
Variable-order fractional diffusion equation; Wellposedness; Regularity; ANOMALOUS DIFFUSION;
D O I
10.1007/s00033-020-1253-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the wellposedness of history-state-based variable-order linear time-fractional diffusion equations in multiple space dimensions. We also prove that the regularity of their solutions depends on the behavior of the variable order at the initial time t = 0, in addition to the usual smoothness assumptions. More precisely, we prove that their solutions have full regularity (i.e., the solutions can achieve high-order smoothness under high-order regularity assumptions of the data) as their integer-order analogs if the variable order has an integer limit at t = 0 or exhibits singular behaviors at t = 0 like in the case of the constant-order time-fractional diffusion equations if the variable order has a non-integer value at t = 0.
引用
收藏
页数:25
相关论文
共 22 条
  • [1] ADAMS R. A., 2003, SOBOLEV SPACES
  • [2] [Anonymous], 2011, DEGRUYTER STUDIES MA
  • [3] Baeumer B, 2018, J COMPUT APPL MATH, V339, P414, DOI 10.1016/j.cam.2018.03.007
  • [4] Singularity Formation in Fractional Burgers' Equations
    Coclite, Giuseppe Maria
    Dipierro, Serena
    Maddalena, Francesco
    Valdinoci, Enrico
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1285 - 1305
  • [5] A difference method for the McKean-Vlasov equation
    Coclite, Giuseppe Maria
    Risebro, Nils Henrik
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [6] Wellposedness of a nonlinear peridynamic model
    Coclite, Giuseppe Maria
    Dipierro, Serena
    Maddalena, Francesco
    Valdinoci, Enrico
    [J]. NONLINEARITY, 2019, 32 (01) : 1 - 21
  • [7] Analysis of fractional differential equations
    Diethelm, K
    Ford, NJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 229 - 248
  • [8] Evans L. C., 2010, Partial Differential Equations, DOI DOI 10.1112/BLMS/20.4.375
  • [9] Kilbas A., 2006, THEORY APPL FRACTION, DOI 10.1016/S0304-0208(06)80001-0
  • [10] Variable order and distributed order fractional operators
    Lorenzo, CF
    Hartley, TT
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 57 - 98