Using Google Trends, Gaussian Mixture Models and DBSCAN for the Estimation of Twitter User Home Location

被引:2
作者
Zola, Paola [1 ]
Cortez, Paulo [2 ]
Tesconi, Maurizio [1 ]
机构
[1] Natl Res Council Italy CNR, Inst Informat & Telemat IIT, Pisa, Italy
[2] Univ Minho, ALGORITMI Ctr, Dept Informat Syst, P-4804533 Guimaraes, Portugal
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT V | 2020年 / 12253卷
关键词
Geostatistics; Gaussian Mixture Models; DBSCAN; Twitter; Google Trends; REAL-TIME;
D O I
10.1007/978-3-030-58814-4_38
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we propose a novel approach to estimate the home location of Twitter users. Given a list of Twitter users, we extract their timelines (up to 3,200) using the Twitter Application Programming Interface (API) service. We use Google Trends to obtain a list of cities in which the nouns of a specific Twitter user are more popular. Then, based on word popularity, we sample the geographical coordinates (latitude, longitude) over all the world surface. Finally, the Gaussian Mixture Model and the DBSCAN clustering algorithms are implemented to estimate the users' geographic coordinates. The results are evaluated using the mean and median error computed on the Haversine distance. Competitive findings are achieved when compared with a baseline approach that estimated the users' location given the Google Trends city mode.
引用
收藏
页码:526 / 534
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2010, EMNLP
[2]   Twitter Geolocation: A Hybrid Approach [J].
Bakerman, Jordan ;
Pazdernik, Karl ;
Wilson, Alyson ;
Fairchild, Geoffrey ;
Bahran, Rian .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (03)
[3]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[4]   "Right Time, Right Place" Health Communication on Twitter: Value and Accuracy of Location Information [J].
Burton, Scott H. ;
Tanner, Kesler W. ;
Giraud-Carrier, Christophe G. ;
West, Joshua H. ;
Barnes, Michael D. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2012, 14 (06) :366-376
[5]   OMG Earthquake! Can Twitter Improve Earthquake Response? [J].
Earle, Paul ;
Guy, Michelle ;
Buckmaster, Richard ;
Ostrum, Chris ;
Horvath, Scott ;
Vaughan, Amy .
SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (02) :246-251
[6]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[7]  
Han B., 2012, P COLING, P1045
[8]   Real-Time Crisis Mapping of Natural Disasters Using Social Media [J].
Middleton, Stuart E. ;
Middleton, Lee ;
Modafferi, Stefano .
IEEE INTELLIGENT SYSTEMS, 2014, 29 (02) :9-17
[9]  
Schulz A., 2013, ICWSM, V7, P573
[10]   Twitter user geolocation using web country noun searches [J].
Zola, Paola ;
Cortez, Paulo ;
Carpita, Maurizio .
DECISION SUPPORT SYSTEMS, 2019, 120 :50-59