On optimal boundary control of Ericksen-Leslie system in dimension two

被引:10
作者
Liu, Qiao [1 ]
Wang, Changyou [2 ]
Zhang, Xiaotao [3 ]
Zhou, Jianfeng [4 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
LIQUID-CRYSTAL FLOWS; NAVIER-STOKES SYSTEM; SUFFICIENT CONDITIONS; WELL-POSEDNESS; WEAK SOLUTION; REGULARITY; EXISTENCE; UNIQUENESS; EVOLUTION; BEHAVIOR;
D O I
10.1007/s00526-019-1676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the boundary value problem of a simplified Ericksen-Leslie system in dimension two with non-slip boundary condition for the velocity field u and time-dependent boundary condition for the director field d of unit length. For such a system, we first establish the existence of a global weak solution that is smooth away from finitely many singular times, then establish the existence of a unique global strong solution that is smooth for t > 0 under the assumption that the image of boundary data is contained in the hemisphere S-+(2). Finally, we apply these theorems to the problem of optimal boundary control of the simplified Ericksen-Leslie system and show both the existence and a necessary condition of an optimal boundary control.
引用
收藏
页数:64
相关论文
共 50 条
[41]   Pullback attractors of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows [J].
You, Bo ;
Li, Fang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04) :1-20
[42]   Non-isothermal General Ericksen-Leslie System: Derivation, Analysis and Thermodynamic Consistency [J].
De Anna, Francesco ;
Liu, Chun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (02) :637-717
[43]   Incompressible Limit of the Ericksen-Leslie Parabolic-Hyperbolic Liquid Crystal Model [J].
Guo, Liang ;
Jiang, Ning ;
Li, Fucai ;
Luo, Yi-Long ;
Tang, Shaojun .
JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
[44]   SCALING INVARIANT BLOW-UP CRITERIA FOR SIMPLIFIED VERSIONS OF ERICKSEN-LESLIE SYSTEM [J].
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (02) :381-388
[45]   Poiseuille Flow of Nematic Liquid Crystals via the Full Ericksen-Leslie Model [J].
Chen, Geng ;
Huang, Tao ;
Liu, Weishi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) :839-891
[46]   Existence of weak solutions to the Ericksen-Leslie model for a general class of free energies [J].
Emmrich, Etienne ;
Lasarzik, Robert .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6492-6518
[47]   Blow-up Criteria of Strong Solutions to the Ericksen-Leslie System in R3 [J].
Hong, Min-Chun ;
Li, Jinkai ;
Xin, Zhouping .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1284-1328
[49]   NUMERICAL APPROXIMATION OF NEMATIC LIQUID CRYSTAL FLOWS GOVERNED BY THE ERICKSEN-LESLIE EQUATIONS [J].
Walkington, Noel J. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :523-540
[50]   ERROR ESTIMATES OF A SPHERE-CONSTRAINT-PRESERVING NUMERICAL SCHEME FOR ERICKSEN-LESLIE SYSTEM WITH VARIABLE DENSITY [J].
Wang, Danxia ;
Liu, Fang ;
Jia, Hongen ;
Zhang, Jianwen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11) :5814-5838