Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm

被引:17
作者
Hariharan, Krishnaswamy [1 ]
Ngoc-Trung Nguyen [1 ,2 ]
Chakraborti, Nirupam [3 ,4 ]
Barlat, Frederic [3 ]
Lee, Myoung-Gyu [5 ]
机构
[1] Indian Inst Technol Delhi, Dept Mech Engn, New Delhi, India
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Pohang Univ Sci & Technol POSTECH, GIFT, Pohang, Gyeongbuk, South Korea
[4] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
[5] Korea Univ, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
Plasticity; Neural net; Yield criterion; Sheet metals; Optimization; Evolutionary algorithms; Anisotropy; Pareto front; Genetic algorithms; ALUMINUM-ALLOY SHEETS; NEURAL NETS; PREDICTION; CRITERIA; BEHAVIOR; STEEL; FLOW; IDENTIFICATION; OPTIMIZATION; METALS;
D O I
10.1080/10426914.2014.941480
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The texture induced anisotropy of yield strength in cold rolled sheet metals is modeled using anisotropic yield criteria. The classical and other optimization methods used so far to determine the yield coefficients are limited by fixed set of experimental data, initial guess values, and pre-determined weight factors. A robust multiobjective optimization based on evolutionary algorithm proposed in this paper minimizes the error in yield stress and plastic strain ratio simultaneously and thereby overcomes the limitations in the approaches used before. The new approach is tested using Hill48 and Barlat89 yield criteria for five different materials from literature. The new approach is observed to improve the prediction capability of yield coefficients when compared to earlier approaches. The Pareto frontier obtained in the new approach can serve as a comparative tool to evaluate the accuracy of different yield criteria.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 56 条
[1]   Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms [J].
Agarwal, A. ;
Tewary, U. ;
Pettersson, F. ;
Das, S. ;
Saxen, H. ;
Chakraborti, N. .
IRONMAKING & STEELMAKING, 2010, 37 (05) :353-359
[2]  
AGARWAL A, 2009, PHARM EXEC, V29, P24
[3]   New convex yield functions for orthotropic metal plasticity [J].
Aretz, Holger ;
Barlat, Frederic .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 51 :97-111
[4]   An improved analytical description of orthotropy in metallic sheets [J].
Banabic, D ;
Aretz, H ;
Comsa, DS ;
Paraianu, L .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (03) :493-512
[5]   Influence of Material Models on the Accuracy of the Sheet Forming Simulation [J].
Banabic, D. ;
Sester, M. .
MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (03) :273-277
[6]  
Banabic D, 2010, SHEET METAL FORMING PROCESSES: CONSTITUTIVE MODELLING AND NUMERICAL SIMULATION, P1, DOI 10.1007/978-3-540-88113-1
[7]   Advances in anisotropy and formability [J].
Banabic, Dorel ;
Barlat, Frederic ;
Cazacu, Oana ;
Kuwabara, Toshihiko .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 (03) :165-189
[8]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[9]   PLASTIC BEHAVIOR AND STRETCHABILITY OF SHEET METALS .1. A YIELD FUNCTION FOR ORTHOTROPIC SHEETS UNDER PLANE-STRESS CONDITIONS [J].
BARLAT, F ;
LIAN, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 1989, 5 (01) :51-66
[10]   Linear transfomation-based anisotropic yield functions [J].
Barlat, F ;
Aretz, H ;
Yoon, JW ;
Karabin, ME ;
Brem, JC ;
Dick, RE .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (05) :1009-1039