Weighted Harmonic Means

被引:3
作者
Kanas, S. [1 ]
机构
[1] Uniwers Rzeszow, Ul S Pigonia 1, PL-35310 Rzeszow, Poland
关键词
Univalent functions; Subordination; Differential subordination; Harmonic means; Weighted harmonic means; Convex weighted harmonic means; UNIVALENT-FUNCTIONS; CONVEX-FUNCTIONS; OPERATOR;
D O I
10.1007/s11785-017-0680-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this study is to develop a conception of the differential subordination involving harmonic means of the expressions , where p is an analytic function in the unit disk, such that . Here, we discuss convex weighted harmonic means and we find some applications in the theory of analytic functions.
引用
收藏
页码:1715 / 1728
页数:14
相关论文
共 18 条
[1]  
Agrrawal P., 2010, Journal of Financial Education, V36, P98
[2]  
Ali RM, 2011, B MALAYS MATH SCI SO, V34, P611
[3]   CLASSES OF MEROMORPHIC α-CONVEX FUNCTIONS [J].
Ali, Rosihan M. ;
Ravichandran, V. .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04) :1479-1490
[4]  
Chou Ya-lun., 1969, STAT ANAL
[5]   Differential subordinations involving arithmetic and geometric means [J].
Crisan, O. ;
Kanas, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 :123-131
[6]   Differential Subordinations and Harmonic Means [J].
Kanas, Stanisawa ;
Tudor, Andreea-Elena .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (03) :1243-1253
[7]   GENERATING FUNCTIONS FOR SOME CLASSES OF UNIVALENT FUNCTIONS [J].
LEWANDOWSKI, Z ;
MILLER, S ;
ZLOTKIEWICZ, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) :111-117
[8]  
Liu JL, 2011, B MALAYS MATH SCI SO, V34, P21
[9]  
Miller S. S., 2000, Monographs and Textbooks in Pure and Applied Mathematics, V225
[10]  
Mocanu PT, 1969, MATH CLUJ, V34, P127