Study of weak solutions for parabolic equations with nonstandard growth conditions

被引:38
作者
Guo, Bin [1 ]
Gao, Wenjie [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
Nonlinear parabolic equation; Nonstandard growth condition; Localization of solutions; FUNCTIONALS;
D O I
10.1016/j.jmaa.2010.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors of this paper study the existence and uniqueness of weak solutions of the initial and boundary value problem for u(t) = div((u(sigma) + d(0))vertical bar del u vertical bar(P(x.r)-2)del u) + f (x, t). Localization property of weak solutions is also discussed. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 384
页数:11
相关论文
共 12 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]  
Andreu F., 2004, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, DOI 10.1007/978-3-0348-7928-6
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[5]  
ANTONTSEV SN, 2009, BLOW SOLUTIONS PARAB, P1
[6]  
ANTONTSEV SN, 2007, ANISOTROPIC PARABOLI, P1
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Blow-up of solutions to quasilinear parabolic equations [J].
Erdem, D .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :65-69
[9]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1