The element-free Galerkin method for the dynamic Signorini contact problems with friction in elastic materials

被引:9
作者
Ding, Rui [1 ]
Shen, Quan [2 ]
Yao, Yuan [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
基金
中国国家自然科学基金;
关键词
Element-free Galerkin method; Moving least-squares approximation; Penalty method; Variational inequalities; MODIFIED MASS METHOD; HEMIVARIATIONAL INEQUALITIES; COULOMB-FRICTION; PROPAGATION; CONVERGENCE; EXISTENCE; FRACTURE;
D O I
10.1016/j.amc.2021.126696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The element-free Galerkin method is proposed for the dynamic Signorini contact problems with friction in elastic materials. The Dirichlet boundary conditions and the constrained conditions are imposed by the penalty method. The error estimates of the element-free Galerkin method indicate that the convergence order depends on the spatial step, the time step, the largest degree of a complete Pascal's monomial basis in the moving least-squares approximation and the penalty factor. Numerical examples verify our theoretical results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 33 条
[1]   A strong form meshfree collocation method for frictional contact on a rigid obstacle [J].
Almas, Ashkan ;
Kim, Tae-Yeon ;
Laursen, Tod A. ;
Song, Jeong-Hoon .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
[2]   CRACK-PROPAGATION BY ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
ENGINEERING FRACTURE MECHANICS, 1995, 51 (02) :295-315
[3]  
Belytschko T, 1996, INT J NUMER METH ENG, V39, P923, DOI 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO
[4]  
2-W
[5]   FRACTURE AND CRACK-GROWTH BY ELEMENT FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
GU, L ;
LU, YY .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (3A) :519-534
[6]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[7]   Space adaptive finite element methods for dynamic Signorini problems [J].
Blum, Heribert ;
Rademacher, Andreas ;
Schroeder, Andreas .
COMPUTATIONAL MECHANICS, 2009, 44 (04) :481-491
[8]   Existence of solutions for a dynamic Signorini's contact problem [J].
Cao, Maria Teresa ;
Quintela, Peregrina .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (05) :355-360
[9]  
cas J. Ne., 1981, MATH THEORY ELASTIC
[10]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375