NONLINEAR VIBRATION ANALYSIS OF A RIGID ROD ON A CIRCULAR SURFACE VIA HAMILTONIAN APPROACH

被引:21
作者
Khan, Y. [1 ]
Wu, Q. [1 ]
Askari, H. [2 ]
Saadatnia, Z. [2 ]
Kalami-Yazdi, M. [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Iran Univ Sci & Technol, Sch Railway Engn, Tehran, Iran
[3] Iran Univ Sci & Technol, Sch Mech Engn, Ctr Excellence Expt Solid Mech & Dynam, Tehran 16846, Iran
基金
中国国家自然科学基金;
关键词
Hamiltonian approach; nonlinear vibration; AMPLITUDE-FREQUENCY FORMULATION; ASYMPTOTIC METHODS; OSCILLATORS; EQUATIONS;
D O I
10.3390/mca15050974
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper applies the Hamiltonian approach a nonlinear oscillator of a rigid rod on a circular surface without slipping, and its natural frequency is obtained. Comparison of the obtained result with the exact one shows good agreement even for large amplitudes and strong nonlinearities.
引用
收藏
页码:974 / 977
页数:4
相关论文
共 15 条
[1]  
Askari H, 2010, Nonlinear Science Letters A, P425
[2]  
Biazar J., 2010, NONLINEAR SCI LETT A, V1, P391
[3]  
Cveticanin L., 2010, NONLINEAR SCI LETT A, V1, P53
[4]   Analytical solution to nonlinear oscillation system of the motion of a rigid rod rocking back using max-min approach [J].
Ganji, S. S. ;
Ganji, D. D. ;
Davodi, A. G. ;
Karimpour, S. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (09) :2676-2684
[5]   Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back [J].
Ganji, S. S. ;
Ganji, D. D. ;
Babazadeh, H. ;
Sadoughi, N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (02) :157-166
[6]  
Gaylord EW, 1959, J APPL MECH, V26, P145
[7]  
He J.-H., 2010, Nonlinear Sci. Lett. A, V1, P1
[8]   An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (21) :3487-3578
[9]  
He JH, 2008, INT J NONLIN SCI NUM, V9, P207
[10]  
He JH, 2008, INT J NONLIN SCI NUM, V9, P211