Abundant multilayer network model solutions and bright-dark solitons for a (3+1)-dimensional p-gBLMP equation

被引:15
作者
Gai, Litao [1 ]
Ma, Wen-Xiu [1 ,2 ,3 ,4 ,5 ]
Sudao, Bilige [6 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[5] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
[6] Inner Mongolia Univ Technol, Dept Math, Hohhot 010051, Neimenggu, Peoples R China
关键词
Multilayer neural network model; (3+1)-dimensional; Generalized bilinear form; LUMP SOLUTIONS;
D O I
10.1007/s11071-021-06864-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper aims to present a multilayer neural network model for a (3 + 1)-dimensional p-gBLMP equation. The generalized bilinear p-gBLMP equation is constructed, on the basis of the generalized bilinear operators. Through selecting different values in each layer, novel types of tensor functions can be furnished. We set the hidden neurons to some specific functions in some cases, and compute four types of new exact network model solutions for the p-gBLMP equation. The novelty and advantage of the proposed model are illustrated by applying to this model. Some plots of those presented new solutions are made to exhibit wave characteristics.
引用
收藏
页码:867 / 877
页数:11
相关论文
共 22 条
[11]   Complexiton solutions and periodic-soliton solutions for the (2 +1)-dimensional BLMP equation [J].
Liu, Jian-Guo ;
Zhu, Wen-Hui ;
He, Yan ;
Seadawy, Aly R. .
AIMS MATHEMATICS, 2020, 5 (01) :421-439
[12]   Multiple soliton solutions for the new (2+1)-dimensional Korteweg de Vries equation by multiple exp-function method [J].
Liu, Jian-Guo ;
Zhou, Li ;
He, Yan .
APPLIED MATHEMATICS LETTERS, 2018, 80 :71-78
[13]  
Ma W.X., 2011, Studies Nonl. Sci, V2, P140
[14]   Lump solutions to a (2+1)-dimensional fourth-order nonlinear PDE possessing a Hirota bilinear form [J].
Ma, Wen-Xiu ;
Manukure, Solomon ;
Wang, Hui ;
Batwa, Sumayah .
MODERN PHYSICS LETTERS B, 2021, 35 (09)
[15]   Nonlinearity-managed lump waves in a spatial symmetric HSI model [J].
Ma, Wen-Xiu ;
Bai, Yushan ;
Adjiri, Alle .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)
[16]   Lump solutions to nonlinear partial differential equations via Hirota bilinear forms [J].
Ma, Wen-Xiu ;
Zhou, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) :2633-2659
[17]   Bilinear equations, Bell polynomials and linear superposition principle [J].
Ma, Wen-Xiu .
XXTH INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-20), 2013, 411
[18]   Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave-stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics [J].
Wang, Meng ;
Tian, Bo ;
Sun, Yan ;
Yin, Hui-Min ;
Zhang, Ze .
CHINESE JOURNAL OF PHYSICS, 2019, 60 :440-449
[20]   Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid [J].
Yue, Chen ;
Khater, Mostafa M. A. ;
Inc, Mustafa ;
Attia, Raghda A. M. ;
Lu, Dianchen .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (09)