Optimal construction of edge-disjoint paths in random graphs

被引:0
作者
Broder, AZ
Frieze, AM
Suen, S
Upfal, E
机构
[1] Digital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[3] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
[4] Weizmann Inst Sci, Dept Appl Math, IL-76100 Rehovot, Israel
关键词
edge-disjoint paths; random graphs; eigenvalues of random graphs;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G = (V, E) with n vertices, m edges, and a family of kappa pairs of vertices in V, we are interested in finding for each pair (a(i); b(i)) a path connecting a(i) to b(i) such that the set of kappa paths so found is edge disjoint. (For arbitrary graphs the problem is NP-complete, although it is in P if kappa is fixed.) We present a polynomial time randomized algorithm for finding the optimal number of edge disjoint paths (up to constant factors) in the random graph G(n,m) for all edge densities above the connectivity threshold. (The graph is chosen first; then an adversary chooses the pairs of endpoints.) Our results give the first tight bounds for the edge-disjoint paths problem for any nontrivial class of graphs.
引用
收藏
页码:542 / 574
页数:33
相关论文
共 19 条
  • [1] ALON N, 1992, PROBABILISTIC METHOD
  • [2] [Anonymous], C MATH SOC J BOLYAI
  • [3] ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES
    BENDER, EA
    CANFIELD, ER
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) : 296 - 307
  • [4] Bollobas B., 1988, COLL MATH SOC J BOLY, V52, P113
  • [5] Bollobas B., 1990, TRIBUTE P ERDOS, P59
  • [6] Bollobas B, 1980, EUR J COMBINAT, V1, P311
  • [7] Bondy J.A., 1976, Graph Theory, V290
  • [8] Broder AZ, 1996, PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P261
  • [9] EXISTENCE AND CONSTRUCTION OF EDGE-DISJOINT PATHS ON EXPANDER GRAPHS
    BRODER, AZ
    FRIEZE, AM
    UPFAL, E
    [J]. SIAM JOURNAL ON COMPUTING, 1994, 23 (05) : 976 - 989
  • [10] Friedman J., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P587, DOI 10.1145/73007.73063