On s-semipermutable subgroups of finite groups

被引:14
作者
Li, Yang Ming [1 ]
He, Xuan Li [2 ]
Wang, Yan Ming [3 ,4 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Guangdong, Peoples R China
[2] Guangxi Univ, Dept Math, Nanning 530004, Peoples R China
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Lingnan Coll, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
s-semipermutable subgroup; the generalized Fitting subgroup; p-nilpotent group; saturated formation; MINIMAL SUBGROUPS; PI-QUASINORMALITY; MAXIMAL-SUBGROUPS; SYLOW SUBGROUPS;
D O I
10.1007/s10114-010-7609-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that G is a finite group and H is a subgroup of G. We say that H is s-semipermutable in G if H G(p) = G(p) H for any Sylow p-subgroup G(p) of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.
引用
收藏
页码:2215 / 2222
页数:8
相关论文
共 15 条
[1]   INFLUENCE OF PI-QUASINORMALITY ON MAXIMAL-SUBGROUPS OF SYLOW SUBGROUPS OF FITTING SUBGROUP OF A FINITE-GROUP [J].
ASAAD, M ;
RAMADAN, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1991, 56 (06) :521-527
[2]   The influence of minimal subgroups on the structure of finite groups [J].
Asaad, M ;
Csörgö, P .
ARCHIV DER MATHEMATIK, 1999, 72 (06) :401-404
[3]   On maximal subgroups of Sylow subgroups of finite groups [J].
Asaad, M .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3647-3652
[4]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[5]  
CHEN WF, 1987, SOLID MECH ARCH, V12, P1
[6]   On finite groups with some semi cover-avoiding subgroups [J].
Guo, Xiu Yun ;
Wang, Li Li .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (09) :1689-1696
[7]  
Huppert B., 1982, Finite Groups, VIII
[8]  
Huppert B., 1967, Endliche Gruppen I
[9]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[10]   The influence of π-quasinormality of some subgroups of a finite group [J].
Li, YM ;
Wang, YM ;
Wei, HQ .
ARCHIV DER MATHEMATIK, 2003, 81 (03) :245-252