Discrete orthogonal decomposition and variational fluid flow estimation

被引:80
作者
Yuan, Jing [1 ]
Schnoerr, Christoph
Memin, Etienne
机构
[1] Univ Mannheim, CVGPR Grp, Mannheim, Germany
[2] INRIA IRISA Rennes, VISTA Grp, Rennes, France
关键词
variational models; optical flow; helmholtz decomposition; experimental fluid dynamics;
D O I
10.1007/s10851-007-0014-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We exploit the mimetic finite difference method introduced by Hyman and Shashkov to present a framework for estimating vector fields and related scalar fields (divergence, curl) of physical interest from image sequences. Our approach provides a basis for consistent definitions of higher-order differential operators, for the analysis and a novel stability result concerning second-order div-curl regularizers, for novel variational schemes to the estimation of solenoidal (divergence-free) image flows, and to convergent numerical methods in terms of subspace corrections.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 28 条
[21]  
Tai XC, 2002, MATH COMPUT, V71, P1105
[22]  
Tai XC, 2002, MATH COMPUT, V71, P105
[23]   Rate of convergence of some space decomposition methods for linear and nonlinear problems [J].
Tai, XC ;
Espedal, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) :1558-1570
[24]  
TAI XC, 1998, 11 INT C DOM DEC MET, P130
[25]   Divergence- and curl-preserving prolongation and restriction formulas [J].
Tóth, G ;
Roe, PL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (02) :736-750
[26]  
Xu J., 1989, THESIS CORNELL U
[27]   ITERATIVE METHODS BY SPACE DECOMPOSITION AND SUBSPACE CORRECTION [J].
XU, JC .
SIAM REVIEW, 1992, 34 (04) :581-613
[28]  
Yuan J, 2005, LECT NOTES COMPUT SC, V3459, P267