Anomalous and nonanomalous behaviors of single-file dynamics

被引:5
作者
Fouad, Ahmed M. [1 ]
Gawlinski, Edward T. [1 ]
机构
[1] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
关键词
Anomalous diffusion; Nonanomalous diffusion; Single-file dynamics; Brownian motion; Stochastic processes; LIVING CELLS; DIFFUSION; PARTICLES; LATTICE;
D O I
10.1016/j.physleta.2017.07.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of a tagged particle that undergoes single-file diffusion in an environment of point Brownian particles. Specifically, we examine the effect of the particle density on the well-known anomalous sub-diffusion behavior of the tagged particle. We compare two single-file systems; the first maintains a fixed average particle density and the second experiences a dilution with time. Both our analytical predictions and computational results, that study the time evolution of the mean square displaceinent per particle for both systems, show that the behavior of the tagged particle transforms from anomalous sub-diffusive (if the average particle density is kept fixed) to normal if a reduction in the average particle density takes place during the diffusion. Our computational results are based on a discrete Monte-Carlo technique that captures perfectly the dynamics of the continuum formulation of single-file systems. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2906 / 2911
页数:6
相关论文
共 42 条
[1]  
[Anonymous], 2012, Interacting particle systems
[2]   Diffusion of tagged particle in an exclusion process [J].
Barkai, E. ;
Silbey, R. .
PHYSICAL REVIEW E, 2010, 81 (04)
[3]   Theory of Single File Diffusion in a Force Field [J].
Barkai, E. ;
Silbey, R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[4]   Molecular dynamics simulation evidence of anomalous diffusion of protein hydration water [J].
Bizzarri, AR ;
Cannistraro, S .
PHYSICAL REVIEW E, 1996, 53 (04) :R3040-R3043
[5]  
Buldyrev Sergey V., 1994, P49
[6]   Enhanced fluctuations of interacting particles confined in a box [J].
Delfau, Jean-Baptiste ;
Coste, Christophe ;
Saint Jean, Michel .
PHYSICAL REVIEW E, 2012, 85 (04)
[7]  
Doukhan P., 2003, Theory and applications of long-range dependence
[8]   Fractional generalized Langevin equation approach to single-file diffusion [J].
Eab, C. H. ;
Lim, S. C. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (13) :2510-2521
[9]   On single-file and less dense processes [J].
Flomenbom, O. ;
Taloni, A. .
EPL, 2008, 83 (02)
[10]  
Fouad A, 2015, THESIS