InMotion hybrid racecar: F1 performance with LeMans endurance

被引:1
作者
Jacob, J. [1 ]
Colin, J. A. [2 ]
Montemayor, H. [2 ]
Sepac, D. [2 ]
Trinh, H. D. [2 ]
Voorderhake, S. F. [2 ]
Zidkova, P. [2 ]
Paulides, J. J. H. [3 ]
Borisaljevic, A. [3 ]
Lomonova, E. A. [3 ]
机构
[1] TNO, Powertrains Res Grp, Helmond, Netherlands
[2] Eindhoven Univ Technol, Stan Ackermans Inst, PDEng Automot Syst Design, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Elect Engn, Electromech & Power Elect Grp, NL-5600 MB Eindhoven, Netherlands
关键词
Energy management strategy; Powertrain design; Race car dynamics; Series hybrid electric race car;
D O I
10.1108/COMPEL-11-2013-0344
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose - The purpose of this paper is to demonstrate that using advanced powertrain technologies can help outperform the state of the art in F1 and LeMans motor racing. By a careful choice and sizing of powertrain components coupled with an optimal energy management strategy, the conflicting requirements of high-performance and high-energy savings can be achieved. Design/methodology/approach - Five main steps were performed. First, definition of requirements: basic performance requirements were defined based on research on the capabilities of Formula 1 race cars. Second, drive cycle generation: a drive cycle was created using these performance requirements as well as other necessary inputs such as the track layout of Circuit de la Sarthe, the drag coefficient, the tire specifications, and the mass of the vehicle. Third, selection of technology: the drive cycle was used to model the power requirements from the powertrain components of the series-hybrid topology. Fourth, lap time sensitivity analysis: the impact of certain design decisions on lap time was determined by the lap time sensitivity analysis. Fifth, modeling and optimization: the design involved building the optimal energy management strategy and comparing the performance of different powertrain component sizings. Findings - Five different powertrain configurations were presented, and several tradeoffs between lap time and different parameters were discussed. The results showed that the fastest achievable lap time using the proposed configurations was 3 min 9 s. It was concluded that several car and component parameters have to be improved to decrease this lap time to the required 2 min 45 s, which is required to outperform F1 on LeMans. Originality/value - This research shows the capabilities of advanced hybrid powertrain components and energy management strategies in motorsports, both in terms of performance and energy savings. The important factors affecting the performance of such a hybrid race car have been highlighted.
引用
收藏
页码:210 / 233
页数:24
相关论文
共 18 条
[1]  
[Anonymous], AUD R18 E TRON QUATT
[2]  
[Anonymous], IEEE VEH POW PROP C
[3]  
[Anonymous], KIN EN REC SYST KERS
[4]  
[Anonymous], CONTROL SPECIFICATIO
[5]  
[Anonymous], 2008, HYBRID ECO FRIENDLY
[6]  
[Anonymous], INS F1 ENG GEARB
[7]  
[Anonymous], DIES LM24
[8]  
[Anonymous], IEEE C VEH POW PROP
[9]  
[Anonymous], Google Earth
[10]  
[Anonymous], 3D ROUT BUILD GOOGL