The effect of saline stress on the colonization of wheat was analyzed by using Azospirillum brasilense Cd carrying the fusion of the reporter gene lacZ (beta -galactosidase) with the N-2 fixation gene promoter nifA. Colonization was also studied by inducing para-nodules on wheat roots using 2,4-D, establishing that these structures acted as bacterium protected niches. Bacteria grown under standard conditions were distributed along the whole root system, except the elongation zone, and colonized the para-nodules. Bacteria experiencing saline stress were mainly localized at the root tips and the lateral roots. In 2,4-D treated plants, most of the bacteria were present around the basal surface of the modified lateral root structures. Using the MPN method, there were not statistical differences between the numbers of control and stressed bacteria. As this method estimates endophytic colonization in contrast with the one using X-gal, which emphasizes colonization on the root surface, both procedures demonstrated to be necessary, concluding that salt treatment reduced surface colonization (X-gal) but not colonization inside the root. The bacterial counts made on inoculated wheat roots indicated higher numbers of both control and stressed bacteria in roots treated with 2,4-D compared with untreated roots.