Power Scaling Law Analysis and Phase Shift Optimization of RIS-Aided Massive MIMO Systems With Statistical CSI

被引:170
作者
Zhi, Kangda [1 ]
Pan, Cunhua [2 ]
Ren, Hong [2 ]
Wang, Kezhi [3 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE7 7XA, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
Massive MIMO; Rician channels; Uplink; Computational modeling; Costs; Buildings; Base stations; Intelligent reflecting surface (IRS); reconfigurable intelligent surface (RIS); massive MIMO; Rician fading channels; uplink achievable rate; statistical CSI; RECONFIGURABLE INTELLIGENT SURFACES; WIRELESS COMMUNICATIONS; ROBUST TRANSMISSION; DESIGN; COMMUNICATION; ENERGY;
D O I
10.1109/TCOMM.2022.3162580
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system, where the phase shifts of the RIS are designed relying on statistical channel state information (CSI). Considering the complex environment, the general Rician channel model is adopted for both the users-RIS links and RIS-BS links. We first derive the closed-form approximate expressions for the achievable rate which holds for arbitrary numbers of base station (BS) antennas and RIS elements. Then, we utilize the derived expressions to provide some insights, including the asymptotic rate performance, the power scaling laws, and the impacts of various system parameters on the achievable rate. We also tackle the sum-rate maximization and the minimum user rate maximization problems by optimizing the phase shifts at the RIS based on genetic algorithm (GA). Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems. Our simulations also demonstrate the feasibility of deploying large-size but low-resolution RIS in massive MIMO systems.
引用
收藏
页码:3558 / 3574
页数:17
相关论文
共 48 条
[1]   Intelligent Reflecting Surfaces: Sum-Rate Optimization Based on Statistical Position Information [J].
Abrardo, Andrea ;
Dardari, Davide ;
Di Renzo, Marco .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) :7121-7136
[2]  
[Anonymous], 2006, Fundamentals of Wireless Communication
[3]  
[Anonymous], 2012, Rep. TR 25.996
[4]   Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing [J].
Bai, Tong ;
Pan, Cunhua ;
Deng, Yansha ;
Elkashlan, Maged ;
Nallanathan, Arumugam ;
Hanzo, Lajos .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2666-2682
[5]   Massive MIMO networks: Spectral, energy, and hardware efficiency [J].
Björnson, Emil ;
Hoydis, Jakob ;
Sanguinetti, Luca .
Foundations and Trends in Signal Processing, 2017, 11 (3-4) :154-655
[6]  
Chen G., 2021, ARXIV210806120
[7]   Robust Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave Vehicular Communications With Statistical CSI [J].
Chen, Yuanbin ;
Wang, Ying ;
Jiao, Lei .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) :928-944
[8]   Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results [J].
Dai, Linglong ;
Wang, Bichai ;
Wang, Min ;
Yang, Xue ;
Tan, Jingbo ;
Bi, Shuangkaisheng ;
Xu, Shenheng ;
Yang, Fan ;
Chen, Zhi ;
Di Renzo, Marco ;
Chae, Chan-Byoung ;
Hanzo, Lajos .
IEEE ACCESS, 2020, 8 :45913-45923
[9]   Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead [J].
Di Renzo, Marco ;
Zappone, Alessio ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
de Rosny, Julien ;
Tretyakov, Sergei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2450-2525
[10]   Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come [J].
Di Renzo, Marco ;
Debbah, Merouane ;
Dinh-Thuy Phan-Huy ;
Zappone, Alessio ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
Sciancalepore, Vincenzo ;
Alexandropoulos, George C. ;
Hoydis, Jakob ;
Gacanin, Haris ;
de Rosny, Julien ;
Bounceur, Ahcene ;
Lerosey, Geoffroy ;
Fink, Mathias .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 2019 (1)