A compact ADI Crank-Nicolson difference scheme for the two-dimensional time fractional subdiffusion equation

被引:1
作者
Li, Mingzhu [1 ,2 ]
Ma, Qiang [3 ]
Ding, Xiaohua [1 ,3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
[2] Qingdao Univ Technol, Sch Sci, Qingdao, Peoples R China
[3] Harbin Inst Technol Weihai, Dept Math, Weihai, Peoples R China
基金
中国国家自然科学基金;
关键词
Compact ADI scheme; Crank-Nicolson difference scheme; fractional subdiffusion equation; convergence; stability; NUMERICAL-SOLUTION; DIFFUSION; APPROXIMATIONS; ALGORITHM;
D O I
10.1080/00207160.2017.1411590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a compact alternating direction implicit (ADI) Crank-Nicolson difference scheme is proposed and analysed for the solution of two-dimensional time fractional subdiffusion equation. The Riemann-Liouville time fractional derivative is approximated by the weighted and shifted Grunwald difference operator and the spatial derivative is discretized by a fourth-order compact finite difference method. The stability and convergence of the difference scheme are discussed and theoretically proven by using the energy method. Finally, numerical experiments are carried out to show that the numerical results are in good agreement with the theoretical analysis.
引用
收藏
页码:2525 / 2538
页数:14
相关论文
共 34 条
  • [1] Application of a fractional advection-dispersion equation
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1403 - 1412
  • [2] A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations
    Bhrawy, A. H.
    Doha, E. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 142 - 156
  • [3] Chen A., 2015, INT J COMPUT MATH, V92, P1
  • [4] An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation
    Chen, Hongbin
    Xu, Da
    Peng, Yulong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (10) : 2178 - 2197
  • [5] Compact alternating direction implicit method for two-dimensional time fractional diffusion equation
    Cui, Mingrong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) : 2621 - 2633
  • [6] An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Fairweather, Graeme
    Yang, Xuehua
    Xu, Da
    Zhang, Haixiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1217 - 1239
  • [7] Gao G.-H., 2012, NUMER METH PART D E, V29, P1459
  • [8] Gorenflo R., 2001, Trends in Math, VC18, P171
  • [9] The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 775 - 791
  • [10] Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Zhou, Zhi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 561 - 582