Generalized Multi-View Collaborative Subspace Clustering

被引:29
|
作者
Lan, Mengcheng [1 ]
Meng, Min [1 ]
Yu, Jun [2 ]
Wu, Jigang [1 ]
机构
[1] Guangdong Univ Technol, Dept Comp Sci, Guangzhou 510006, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Comp Sci, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaboration; Correlation; Tensors; Task analysis; Optimization; Linear programming; Deep learning; Multi-view clustering; consensus subspace structure; complementary information; low-rank representation; ALGORITHM;
D O I
10.1109/TCSVT.2021.3119956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In real-world applications, complete or incomplete multi-view data are common, which leads to the problem of generalized multi-view clustering. Recently, researchers attempt to learn the latent representation in the common subspace from heterogeneous data, which usually suffers from feature degeneration. Moreover, there are limited efforts on simultaneously revealing the underlying subspace structure and exploring the complementary information from incomplete multiple views. In this paper, we introduce a novel Generalized Multi-view Collaborative Subspace Clustering (GMCSC) framework to address the above issues, in which consensus subspace structure of all views and embedding subspaces for each view are jointly learned to benefit each other. Specifically, we develop a novel collaborative subspace learning strategy based on self-representation learning, which provides a brand-new way of pursuing the complete subspace structure directly from multi-view data. Furthermore, we explore complementary information by enforcing the consistency across different views and preserving the view-specific information of each view, which can alleviate the problem of feature degeneration and enhance the reasonability of using a consensus representation for multiple views. Experimental results on six benchmark datasets demonstrate that the proposed method can significantly outperform the state-of-the-art algorithms.
引用
收藏
页码:3561 / 3574
页数:14
相关论文
共 50 条
  • [1] Generalized Latent Multi-View Subspace Clustering
    Zhang, Changqing
    Fu, Huazhu
    Hu, Qinghua
    Cao, Xiaochun
    Xie, Yuan
    Tao, Dacheng
    Xu, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 86 - 99
  • [2] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [3] Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering
    Chen, Yongyong
    Wang, Shuqin
    Peng, Chong
    Hua, Zhongyun
    Zhou, Yicong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4022 - 4035
  • [4] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102
  • [5] Consistency and Diversity Induced Tensorized Multi-View Subspace Clustering
    Xiao, Chunming
    Huang, Yonghui
    Huang, Haonan
    Zhao, Qibin
    Zhou, Guoxu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 798 - 809
  • [6] Adaptively Topological Tensor Network for Multi-View Subspace Clustering
    Liu, Yipeng
    Chen, Jie
    Lu, Yingcong
    Ou, Weiting
    Long, Zhen
    Zhu, Ce
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5562 - 5575
  • [7] Constrained bilinear factorization multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Tian, Zhiqiang
    Li, Zhongyu
    Pang, Shanmin
    Jia, Xiuyi
    KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [8] Robust Tensor Subspace Learning for Incomplete Multi-View Clustering
    Liang, Cheng
    Wang, Daoyuan
    Zhang, Huaxiang
    Zhang, Shichao
    Guo, Fei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6934 - 6948
  • [9] Collaborative Multi-View Clustering
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [10] High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering
    Li, Zhenglai
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2067 - 2080