Gyroscope-Structured Triboelectric Nanogenerator for Harvesting Multidirectional Ocean Wave Energy

被引:94
作者
Gao, Qi [1 ]
Xu, Yuhong [1 ]
Yu, Xin [1 ]
Jing, Zhaoxu [1 ]
Cheng, Tinghai [1 ]
Wang, Zhong Lin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
北京市自然科学基金;
关键词
triboelectric nanogenerator; ocean wave; multidirectional energy harvesting; gyroscope structure; surface contact; WATER-WAVE;
D O I
10.1021/acsnano.2c01594
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wave motion in the ocean can generate plentiful energy, but it is difficult to harvest wave energy for practical use because of the low frequency and random directional characteristics of wave motion. In this paper, a gyroscope-structured triboelectric nanogenerator (GS-TENG) is proposed for harvesting multidirectional ocean wave energy. Its inner and outer generation units can operate independently in different directions, and they all adopt the friction mode of surface contact. While realizing noninterference multidirectional energy harvesting, the power generation area is increased. In the experiments, under acceleration of 6 m/s2 with variations in excitation angle, the GS-TENG can output direct currents of 0.8-3.2 mu A, and the open-circuit voltages of the inner and outer generation units can reach 730 and 160 V, respectively. When the devices are networked and placed in the water, the electrical energy generated by the GS-TENGs can enable commercial thermometers to operate normally. The attenuation of direct-current output by the GS-TENG in the experiment of 30 days in water is about 8%, which verifies the good durability of the device in the water environment. Therefore, the GS-TENG has excellent application prospects in the wave energy harvesting field.
引用
收藏
页码:6781 / 6788
页数:8
相关论文
共 41 条
[1]   Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system [J].
Chen, Huamin ;
Xing, Chao ;
Li, Yuliang ;
Wang, Jun ;
Xu, Yun .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (03) :1063-1077
[2]   Hand-Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices [J].
Chung, Jihoon ;
Yong, Hyungseok ;
Moon, Haksung ;
Quang Van Duong ;
Choi, Seung Tae ;
Kim, Dongseob ;
Lee, Sangmin .
ADVANCED SCIENCE, 2018, 5 (11)
[3]   CHARGE GENERATION ON DIELECTRIC SURFACES [J].
DAVIES, DK .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1969, 2 (11) :1533-&
[4]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[5]   Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting [J].
Feng, Yawei ;
Liang, Xi ;
An, Jie ;
Jiang, Tao ;
Wang, Zhong Lin .
NANO ENERGY, 2021, 81
[6]   Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model [J].
Gao, Wenchao ;
Shao, Jiajia ;
Sagoe-Crentsil, Kwesi ;
Duan, Wenhui .
NANO ENERGY, 2021, 80
[7]   A highly efficient triboelectric negative air ion generator [J].
Guo, Hengyu ;
Chen, Jie ;
Wang, Longfei ;
Wang, Aurelia Chi ;
Li, Yafeng ;
An, Chunhua ;
He, Jr-Hau ;
Hu, Chenguo ;
Hsiao, Vincent K. S. ;
Wang, Zhong Lin .
NATURE SUSTAINABILITY, 2021, 4 (02) :147-153
[8]   A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments [J].
Guo, Hengyu ;
Wen, Zhen ;
Zi, Yunlong ;
Yeh, Min-Hsin ;
Wang, Jie ;
Zhu, Liping ;
Hu, Chenguo ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2016, 6 (06)
[9]   Triboelectric Nanogenerators for Blue Energy Harvesting [J].
Khan, Usman ;
Kim, Sang-Woo .
ACS Nano, 2016, 10 (07) :6429-6432
[10]   Elastic spiral triboelectric nanogenerator as a self-charging case for portable electronics [J].
Kim, Banseok ;
Chung, Jihoon ;
Moon, Haksung ;
Kim, Dongseob ;
Lee, Sangmin .
NANO ENERGY, 2018, 50 :133-139