On reversible triangular norms

被引:11
|
作者
Fodor, J
Jenei, S
机构
[1] Univ Agr Sci Godollo, Inst Math & Comp Sci, GATE, H-2103 Godollo, Hungary
[2] Janus Pannonius Univ, Dept Appl Math & Informat, H-7601 Pecs, Hungary
关键词
D O I
10.1016/S0165-0114(98)00257-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We completely characterize those continuous triangular norms which are recently called reversible. This characterization is a step toward the solution of an open problem raised by Kimberling [(Publ. Math. Dabrecen 20 (1973) 21-39)] 25 years ago. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [1] Further properties of reversible triangular norms
    Ouyang, Yao
    Li, Jun
    Fang, Jinxuan
    FUZZY SETS AND SYSTEMS, 2007, 158 (22) : 2504 - 2509
  • [2] Triangular norms
    Klement, E.P.
    Mesiar, R.
    Pap, E.
    2001, Elsevier Science B.V. (123)
  • [3] Semigroups and triangular norms
    Klement, EP
    Mesiar, R
    Pap, E
    LOGICAL, ALGEBRAIC, ANALYTIC, AND PROBABILISTIC ASPECTS OF TRIANGULAR NORMS, 2005, : 63 - 93
  • [4] Generators of triangular norms
    Mesiarová, A
    LOGICAL, ALGEBRAIC, ANALYTIC, AND PROBABILISTIC ASPECTS OF TRIANGULAR NORMS, 2005, : 95 - 111
  • [5] Generated triangular norms
    Klement, EP
    Mesiar, R
    Pap, E
    KYBERNETIKA, 2000, 36 (03) : 363 - 377
  • [6] On Archimedean triangular norms
    Jenei, S
    FUZZY SETS AND SYSTEMS, 1998, 99 (02) : 179 - 186
  • [7] Extended triangular norms
    Starczewski, Janusz T.
    INFORMATION SCIENCES, 2009, 179 (06) : 742 - 757
  • [8] Fibred triangular norms
    Jenei, S
    FUZZY SETS AND SYSTEMS, 1999, 103 (01) : 67 - 82
  • [9] Migrative triangular norms
    Fodor, Janos
    Rudas, Imre J.
    SACI 2007: 4TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS, PROCEEDINGS, 2007, : 25 - +
  • [10] On continuous triangular norms
    Jenei, S
    Fodor, JC
    FUZZY SETS AND SYSTEMS, 1998, 100 (1-3) : 273 - 282