Structure and Catalytic Mechanism of a Bacterial Friedel-Crafts Acylase

被引:23
作者
Pavkov-Keller, Tea [1 ,2 ]
Schmidt, Nina G. [1 ,3 ]
Zadlo-Dobrowolska, Anna [3 ]
Kroutil, Wolfgang [1 ,3 ,4 ]
Gruber, Karl [1 ,2 ,4 ]
机构
[1] ACIB, Petersgasse 14, A-8010 Graz, Austria
[2] Karl Franzens Univ Graz, Inst Mol Biosci, Humboldtstr 50, A-8010 Graz, Austria
[3] Karl Franzens Univ Graz, Dept Chem Organ & Bioorgan Chem, Heinrichstr 28-2, A-8010 Graz, Austria
[4] BioTechMed Graz, Mozartgasse 12-2, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
acyltransferases; Friedel-Crafts acylation; multicomponent enzymes; solid-state structures; transferases; X-ray diffraction; POLYKETIDE SYNTHASE; CRYSTAL-STRUCTURE; CARRIER PROTEIN; GENE-CLUSTER; BIOSYNTHESIS; RESISTANCE; ACYLTRANSFERASE; 2,4-DIACETYLPHLOROGLUCINOL; ACETYLTRANSFERASE; PURIFICATION;
D O I
10.1002/cbic.201800462
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
C-C bond-forming reactions are key transformations for setting up the carbon frameworks of organic compounds. In this context, Friedel-Crafts acylation is commonly used for the synthesis of aryl ketones, which are common motifs in many fine chemicals and natural products. A bacterial multicomponent acyltransferase from Pseudomonas protegens (PpATase) catalyzes such Friedel-Crafts C-acylation of phenolic substrates in aqueous solution, reaching up to >99 % conversion without the need for CoA-activated reagents. We determined X-ray crystal structures of the native and ligand-bound complexes. This multimeric enzyme consists of three subunits: PhlA, PhlB, and PhlC, arranged in a Phl(A(2)C(2))(2)B-4 composition. The structure of a reaction intermediate obtained from crystals soaked with the natural substrate 1-(2,4,6-trihydroxyphenyl)ethanone together with site-directed mutagenesis studies revealed that only residues from the PhlC subunits are involved in the acyl transfer reaction, with Cys88 very likely playing a significant role during catalysis. These structural and mechanistic insights form the basis of further enzyme engineering efforts directed towards enhancing the substrate scope of this enzyme.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 55 条
  • [1] Biosynthesis of phloroglucinol
    Achkar, J
    Xian, M
    Zhao, HM
    Frost, JW
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) : 5332 - 5333
  • [2] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [3] [Anonymous], 2017, ANGEW CHEM, V129, P7723
  • [4] Identification and characterization of gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87
    Bangera, MG
    Thomashow, LS
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (10) : 3155 - 3163
  • [5] Why are pathogenic staphylococci so lysozyme resistant?: The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus
    Bera, A
    Herbert, S
    Jakob, A
    Vollmer, W
    Götz, F
    [J]. MOLECULAR MICROBIOLOGY, 2005, 55 (03) : 778 - 787
  • [6] Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus
    Bock, Tobias
    Kasten, Janin
    Mueller, Rolf
    Blankenfeldt, Wulf
    [J]. CHEMBIOCHEM, 2016, 17 (13) : 1257 - 1262
  • [7] Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family
    Byers, David M.
    Gong, Huansheng
    [J]. BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2007, 85 (06): : 649 - 662
  • [8] Staphylococcus aureus 3-hydroxy-3-methylglutaryl-CoA synthase -: Crystal structure and mechanism
    Campobasso, N
    Patel, M
    Wilding, IE
    Kallender, H
    Rosenberg, M
    Gwynn, MN
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) : 44883 - 44888
  • [9] Improved phloroglucinol production by metabolically engineered Escherichia coli
    Cao, Yujin
    Jiang, Xinglin
    Zhang, Rubing
    Xian, Mo
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 91 (06) : 1545 - 1552
  • [10] Production of phloroglucinol by Escherichia coli using a stationary-phase promoter
    Cao, Yujin
    Xian, Mo
    [J]. BIOTECHNOLOGY LETTERS, 2011, 33 (09) : 1853 - 1858