Homeodomain leucine zipper class I genes in Arabidopsis.: Expression patterns and phylogenetic relationships

被引:295
作者
Henriksson, E [1 ]
Olsson, ASB [1 ]
Johannesson, H [1 ]
Johansson, H [1 ]
Hanson, J [1 ]
Engström, P [1 ]
Söderman, E [1 ]
机构
[1] Uppsala Univ, Evolut Bio Ctr, Dept Physiol Bot, SE-75236 Uppsala, Sweden
关键词
D O I
10.1104/pp.105.063461
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Members of the homeodomain leucine zipper (HDZip) family of transcription factors are present in a wide range of plants, from mosses to higher plants, but not in other eukaryotes. The HDZip genes act in developmental processes, including vascular tissue and trichome development, and several of them have been suggested to be involved in the mediation of external signals to regulate plant growth. The Arabidopsis ( Arabidopsis thaliana) genome contains 47 HDZip genes, which, based on sequence criteria, have been grouped into four different classes: HDZip I to IV. In this article, we present an overview of the class I HDZip genes in Arabidopsis. We describe their expression patterns, transcriptional regulation properties, duplication history, and phylogeny. The phylogeny of HDZip class I genes is supported by data on the duplication history of the genes, as well as the intron/exon patterning of the HDZip-encoding motifs. The HDZip class I genes were found to be widely expressed and partly to have overlapping expression patterns at the organ level. Further, abscisic acid or water deficit treatments and different light conditions affected the transcript levels of a majority of the HDZip I genes. Within the gene family, our data show examples of closely related HDZip genes with similarities in the function of the gene product, but a divergence in expression pattern. In addition, six HDZip class I proteins tested were found to be activators of gene expression. In conclusion, several HDZip I genes appear to regulate similar cellular processes, although in different organs or tissues and in response to different environmental signals.
引用
收藏
页码:509 / 518
页数:10
相关论文
共 63 条
[1]   Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis [J].
Abe, M ;
Katsumata, H ;
Komeda, Y ;
Takahashi, T .
DEVELOPMENT, 2003, 130 (04) :635-643
[2]   Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein [J].
Abe, M ;
Takahashi, T ;
Komeda, Y .
PLANT JOURNAL, 2001, 26 (05) :487-494
[3]   ECTOPIC EXPRESSION OF THE ARABIDOPSIS TRANSCRIPTIONAL ACTIVATOR ATHB-1 ALTERS LEAF CELL FATE IN TOBACCO [J].
AOYAMA, T ;
DONG, CH ;
WU, Y ;
CARABELLI, M ;
SESSA, G ;
RUBERTI, I ;
MORELLI, G ;
CHUA, NH .
PLANT CELL, 1995, 7 (11) :1773-1785
[4]   Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants [J].
Aso, K ;
Kato, M ;
Banks, JA ;
Hasebe, M .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) :544-552
[5]   The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J].
Baima, S ;
Possenti, M ;
Matteucci, A ;
Wisman, E ;
Altamura, MM ;
Ruberti, I ;
Morelli, G .
PLANT PHYSIOLOGY, 2001, 126 (02) :643-655
[6]   Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1679-1691
[7]   A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome [J].
Blanc, G ;
Hokamp, K ;
Wolfe, KH .
GENOME RESEARCH, 2003, 13 (02) :137-144
[8]  
Burglin T R., 1994, Guidebook to the homeobox genes, P27, DOI [10.1093/oso/9780198599395.003.0003, DOI 10.1093/OSO/9780198599395.003.0003]
[9]   THE ARABIDOPSIS ATHB-2 AND ATHB-4 GENES ARE STRONGLY INDUCED BY FAR-RED-RICH LIGHT [J].
CARABELLI, M ;
SESSA, G ;
BAIMA, S ;
MORELLI, G ;
RUBERTI, I .
PLANT JOURNAL, 1993, 4 (03) :469-479
[10]   Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants [J].
Carabelli, M ;
Morelli, G ;
Whitelam, G ;
Ruberti, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3530-3535