Heston-Type Stochastic Volatility with a Markov Switching Regime

被引:18
作者
Elliott, Robert J. [1 ,2 ,3 ]
Nishide, Katsumasa [4 ]
Osakwe, Carlton-James U. [5 ]
机构
[1] Univ Adelaide, Sch Math, Adelaide, SA 5005, Australia
[2] Univ South Australia, Ctr Appl Financial Studies, Adelaide, SA 5001, Australia
[3] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[4] Yokohama Natl Univ, Dept Econ, Hodogaya Ku, 79-4 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[5] Mt Royal Univ, Calgary, AB, Canada
基金
澳大利亚研究理事会;
关键词
MODEL; SIMULATION;
D O I
10.1002/fut.21761
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We construct a Heston-type stochastic volatility model with a Markov switching regime to price a plain-vanilla stock option. A semi-analytic solution, which contains a matrix ODE is obtained and numerically calculated. Our model is flexible enough to provide a wide variety of volatility surfaces for the same volatility level but different regimes. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:902 / 919
页数:18
相关论文
共 26 条
[11]   Pricing of discount bonds with a Markov switching regime [J].
Elliott R.J. ;
Nishide K. .
Annals of Finance, 2014, 10 (3) :509-522
[12]  
Elloitt R., 2007, APPL MATH FINANCE, V14, P41
[13]   What good is a volatility model? [J].
Engle, Robert F. ;
Patton, Andrew J. .
QUANTITATIVE FINANCE, 2001, 1 (02) :237-245
[14]   Valuation of volatility derivatives as an inverse problem [J].
Friz, P ;
Gatheral, J .
QUANTITATIVE FINANCE, 2005, 5 (06) :531-542
[15]  
Fuh C-D., 2012, J. Data Sci, V10, P483, DOI DOI 10.6339/JDS.201207_10(3).0008
[16]  
Galiotos V., 2008, STOCHASTIC VOLATILIT
[17]  
Hamilton J., 2008, The New Palgrave Dictionary of Economics, P1
[18]   AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY AND CHANGES IN REGIME [J].
HAMILTON, JD ;
SUSMEL, R .
JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) :307-333
[20]   COMPLEX LOGARITHMS IN HESTON-LIKE MODELS [J].
Lord, Roger ;
Kahl, Christian .
MATHEMATICAL FINANCE, 2010, 20 (04) :671-694