Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials

被引:259
作者
Kiendl, Josef [1 ]
Hsu, Ming-Chen [2 ]
Wu, Michael C. H. [2 ]
Reali, Alessandro [1 ,3 ,4 ]
机构
[1] Univ Pavia, Dipartimento Ingn Civile Architettura, I-27100 Pavia, Italy
[2] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[3] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
[4] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
Isogeometric; Kirchhoff-Love; Thin shell; Hyperelastic; Finite strain; Incompressibility; THIN SHELLS; ELEMENT; DEFORMATION; NURBS; SIMULATION; REFINEMENT; STRAINS; LOCKING; CAD;
D O I
10.1016/j.cma.2015.03.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present formulations for compressible and incompressible hyperelastic thin shells which can use general 3D constitutive models. The necessary plane stress condition is enforced analytically for incompressible materials and iteratively for compressible materials. The thickness stretch is statically condensed and the shell kinematics are completely described by the first and second fundamental forms of the midsurface. We use C-1-continuous isogeometric discretizations to build the numerical models. Numerical tests, including structural dynamics simulations of a bioprosthetic heart valve, show the good performance and applicability of the presented methods. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 303
页数:24
相关论文
共 75 条
[1]  
[Anonymous], 2014, AUTODEST T SPLINES P
[2]  
[Anonymous], 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, DOI DOI 10.1016/j.advengsoft.2011.06.010
[3]   A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis [J].
Apostolatos, Andreas ;
Schmidt, Robert ;
Wuechner, Roland ;
Bletzinger, Kai-Uwe .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (07) :473-504
[4]   Finite-element analysis of hyperelastic thin shells with large strains [J].
Basar, Y ;
Ding, Y .
COMPUTATIONAL MECHANICS, 1996, 18 (03) :200-214
[5]   Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines [J].
Bazilevs, Y. ;
Hsu, M-C. ;
Scott, M. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :28-41
[6]   A computational procedure for prebending of wind turbine blades [J].
Bazilevs, Y. ;
Hsu, M-C ;
Kiendl, J. ;
Benson, D. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (03) :323-336
[7]   3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Kiendl, J. ;
Wuechner, R. ;
Bletzinger, K. -U. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :236-253
[8]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[9]   Computational fluid-structure interaction: methods and application to a total cavopulmonary connection [J].
Bazilevs, Yuri ;
Hsu, M. -C. ;
Benson, D. J. ;
Sankaran, S. ;
Marsden, A. L. .
COMPUTATIONAL MECHANICS, 2009, 45 (01) :77-89
[10]   Blended isogeometric shells [J].
Benson, D. J. ;
Hartmann, S. ;
Bazilevs, Y. ;
Hsu, M. -C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 255 :133-146