Effect of anisotropic non-Kolmogorov turbulence on the evolution behavior of Gaussian Schell-model vortex beams

被引:11
|
作者
Huang, Yongping [1 ]
Zeng, Anping [1 ]
机构
[1] Yibin Univ, Coll Phys & Elect Informat, Computat Phys Key Lab Sichuan Prov, Yibin 644007, Sichuan, Peoples R China
关键词
Anisotropic non-Kolmogorov turbulence; Evolution behavior of coherent vortices; Gaussian Schell-model vortex beams; PROPAGATION; VORTICES;
D O I
10.1016/j.optcom.2018.11.080
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effect of anisotropic non-Kolmogorov turbulence on the evolution behavior of average intensity and coherent vortices for Gaussian Schell-model (GSM) vortex beams is investigated. Based on the extended Huygens-Fresnel principle and power spectrum of the anisotropic non-Kolmogorov turbulence, the analytical expressions for the cross-spectral density and average intensity of GSM vortex beams propagating through anisotropic non-Kolmogorov turbulence are obtained. The evolution behavior of intensity and coherent vortices for GSM vortex beams in anisotropic non-Kolmogorov turbulence has been discussed in detail by numerical simulation. The results shown that the evolution behavior of coherent vortices and intensity profile depends on the effective anisotropic factor, generalized exponent factor and structure constant of anisotropic non-Kolmogorov turbulence, as well as the beam parameters, such as beam waist, wave length and correlation length.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [1] Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Qiu, Zhiliang
    Yi, Xiang
    Liu, Zengji
    OPTICS EXPRESS, 2015, 23 (10): : 12508 - 12523
  • [2] Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence
    Zhang, Chao
    Zhou, Zhenglan
    Xu, Huafeng
    Zhou, Zhengxian
    Han, Yashuai
    Yuan, Yangsheng
    Qu, Jun
    OPTICS EXPRESS, 2022, 30 (03): : 4071 - 4083
  • [3] Average Polarization of Electromagnetic Gaussian Schell-Model Beams through Anisotropic Non-Kolmogorov Turbulence
    Zhao, Yuanhang
    Zhang, Yixin
    Wang, Qiu
    RADIOENGINEERING, 2016, 25 (04) : 652 - 657
  • [4] Propagation properties of Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    JOURNAL OF OPTICS, 2016, 18 (10)
  • [5] Spreading and evolution behavior of coherent vortices of multi-Gaussian Schell-model vortex beams propagating through non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Yi, Xiang
    Qiu, Zhiliang
    Liu, Zengji
    OPTICS AND LASER TECHNOLOGY, 2017, 87 : 99 - 107
  • [6] Average polarizability of quantization Bessel-Gaussian Schell-model beams in anisotropic non-Kolmogorov turbulence
    Li, Ye
    Zhang, Yixin
    FOURTH SEMINAR ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2018, 10697
  • [7] Spreading of radial stochastic electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Lu Fang
    Zhao Dan
    Han Xiang'e
    AOPC 2015: OPTICAL AND OPTOELECTRONIC SENSING AND IMAGING TECHNOLOGY, 2015, 9674
  • [8] Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence
    Xu, Hua-Feng
    Zhang, Zhou
    Qu, Jun
    Huang, Wei
    OPTICS EXPRESS, 2014, 22 (19): : 22479 - 22489
  • [9] Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Zhang, Biling
    Xu, Yonggen
    Wang, Xiaoyan
    Dan, Youquan
    OSA CONTINUUM, 2019, 2 (01) : 162 - 174
  • [10] Cross-polarization properties of two Gaussian Schell-model beams through non-Kolmogorov turbulence
    Wang, Yuanguang
    Si, Congfang
    Zhang, Yixin
    Wang, Jianyu
    Jia, Jianjun
    OPTICS AND LASERS IN ENGINEERING, 2011, 49 (08) : 1060 - 1064