Stochastic master stability function for noisy complex networks

被引:14
作者
Della Rossa, Fabio [1 ,2 ]
DeLellis, Pietro [2 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Federico II, I-80125 Naples, Italy
关键词
CONTRACTION ANALYSIS; CHAOTIC OSCILLATORS; SYNCHRONIZATION; SYSTEMS;
D O I
10.1103/PhysRevE.101.052211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we broaden the master stability function approach to study the stability of the synchronization manifold in complex networks of stochastic dynamical systems. We provide necessary and sufficient conditions for exponential stability that allow us to discriminate the impact of noise. We observe that noise can be beneficial for synchronization when it diffuses evenly in the network. On the contrary, an excessively large amount of noise only acting on a subset of the node state variables might have disruptive effects on the network synchronizability. To demonstrate our findings, we complement our theoretical derivations with extensive simulations on paradigmatic examples of networks of noisy systems.
引用
收藏
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 2012, Matrix Analysis
[2]  
[Anonymous], 2007, Stochastic Differential Equations and Applications
[3]   Synchronization and collective swimming patterns in fish (Hemigrammus bleheri) [J].
Ashraf, I. ;
Godoy-Diana, R. ;
Halloy, J. ;
Collignon, B. ;
Thiria, B. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2016, 13 (123)
[4]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[5]  
Buscarino A., 2013, SCI REP, V3, P1
[6]  
Carbonell F., 2010, INT J NUMER ANAL M B, V1, P147
[7]   Synchronization in Complex Dynamical Networks With Random Sensor Delay [J].
Chen, Maoyin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2010, 57 (01) :46-50
[8]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[9]   On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks [J].
DeLellis, Pietro ;
di Bernardo, Mario ;
Russo, Giovanni .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) :576-583
[10]   Analysis and stability of consensus in networked control systems [J].
DeLellis, Pietro ;
diBernardo, Mario ;
Garofalo, Franco ;
Liuzza, Davide .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :988-1000