Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments

被引:28
作者
Karaa, Samir [1 ]
Mustapha, Kassem [2 ]
Pani, Amiya K. [3 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Muscat 123, Oman
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Fractional diffusion equation; Finite elements; Energy argument error analysis; Nonsmooth data; NUMERICAL-SOLUTION; ELEMENT-METHOD; DISCRETIZATION; QUADRATURE; BOUNDARY; EQUATION;
D O I
10.1007/s10915-017-0450-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the piecewise-linear finite element method (FEM) is applied to approximate the solution of time-fractional diffusion equations on bounded convex domains. Standard energy arguments do not provide satisfactory results for such a problem due to the low regularity of its exact solution. Using a delicate energy analysis, a priori optimal error bounds in -, -norms, and a quasi-optimal bound in -norm are derived for the semidiscrete FEM for cases with smooth and nonsmooth initial data. The main tool of our analysis is based on a repeated use of an integral operator and use of a type of weights to take care of the singular behavior of the continuous solution at . The generalized Leibniz formula for fractional derivatives is found to play a key role in our analysis. Numerical experiments are presented to illustrate some of the theoretical results.
引用
收藏
页码:519 / 535
页数:17
相关论文
共 20 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6
[3]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[4]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[5]   Compact alternating direction implicit method for two-dimensional time fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2621-2633
[6]   Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Pasciak, Joseph ;
Zhou, Zhi .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) :561-582
[7]   ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :445-466
[8]   Finite volume element method for two-dimensional fractional subdiffusion problems [J].
Karaa, Samir ;
Mustapha, Kassem ;
Pani, Amiya K. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) :945-964
[9]   ON A GLOBAL SUPERCONVERGENCE OF THE GRADIENT OF LINEAR TRIANGULAR ELEMENTS [J].
KRIZEK, M ;
NEITTAANMAKI, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 18 (02) :221-233
[10]   Time-stepping error bounds for fractional diffusion problems with non-smooth initial data [J].
McLean, William ;
Mustapha, Kassem .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :201-217