KAM theorem and quantum field theory

被引:34
作者
Bricmont, J
Gawedzki, K
Kupiainen, A
机构
[1] Univ Catholique Louvain, FYMA, B-1348 Louvain, Belgium
[2] CNRS, IHES, F-91440 Bures Sur Yvette, France
[3] Univ Helsinki, Dept Math, Helsinki 00014, Finland
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050573
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a new proof of the KAM theorem for analytic Hamiltonians, The proof is inspired by a quantum field theory formulation of the problem and is based on a renormalization group argument treating the small denominators inductively scale by scale. The crucial cancellations of resonances are shown to follow from the Ward identities expressing the translation invariance of the corresponding field theory.
引用
收藏
页码:699 / 727
页数:29
相关论文
共 21 条
[1]  
[Anonymous], ANN SC NORM SUPER PI
[2]  
[Anonymous], 1985, MONOGR TXB PURE APPL
[3]  
[Anonymous], 1996, MATH PHYS ELECT J
[4]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[5]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P91, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[6]   Quasi linear flows on tori: Regularity of their linearization [J].
Bonetto, F ;
Gallavotti, G ;
Gentile, G ;
Mastropietro, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (03) :707-736
[7]  
BONETTO F, IN PRESS ANN SC SUPE
[8]   Compensations in small divisor problems [J].
Chierchia, L ;
Falcolini, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :135-160
[9]   TWISTLESS KAM TORI [J].
GALLAVOTTI, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :145-156