Rough Set Theory Approach for Classifying Multimedia Data

被引:0
作者
Rahman, M. Nordin A. [1 ]
Lazim, Yuzarimi M. [1 ]
Mohamed, Farham [1 ]
Safei, Suhailan [1 ]
Deris, Sufian Mat [1 ]
Yusof, M. Kamir [1 ]
机构
[1] Univ Sultan Zainal Abidin, Fac Informat, Kuala Terengganu 21300, Malaysia
来源
SOFTWARE ENGINEERING AND COMPUTER SYSTEMS, PT 2 | 2011年 / 180卷
关键词
Rough set theory; multimedia data management; approximation; classification; data clustering;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The huge size of multimedia data requires for efficient data classification and organization in providing effective multimedia data manipulation. Those valuable data must be captured and stored for potential purposes. One of the main problems in Multimedia Information System (MIS) is the management of multimedia data. As a consequence, multimedia data management has emerged as an important research area for querying. retrieving, inserting and updating of these vast multimedia data. This research considers the rough set theory technique to organize and categorize the multimedia data. Rough set theory method is useful for exploring multimedia data and simplicity to construct multimedia data classification. Classification will help to improve the performance of multimedia data retrieving and organizing process.
引用
收藏
页码:116 / 124
页数:9
相关论文
共 50 条
  • [31] Rough set based attribute reduction approach in data mining
    Li, K
    Liu, YS
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 60 - 63
  • [32] A rough set approach to the discovery of classification rules in spatial data
    Leung, Yee
    Fung, Tung
    Mi, Ju-Sheng
    Wu, Wei-Zhi
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2007, 21 (09) : 1033 - 1058
  • [33] An Analysis on Deep Learning Approach Performance in Classifying Big Data Set
    Mohamad, Masurah
    Selamat, Ali
    Salleh, Khairulliza Ahmad
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA SCIENCES (AIDAS2019), 2019, : 35 - 39
  • [34] Supervaluationism and Rough Set Theory
    Fu, Hao Cheng
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012,
  • [35] Rough Set Theory and Digraphs
    Chiaselotti, Giampiero
    Ciucci, Davide
    Gentile, Tommaso
    Infusino, Federico
    FUNDAMENTA INFORMATICAE, 2017, 153 (04) : 291 - 325
  • [36] A Group Incremental Approach to Feature Selection Applying Rough Set Technique
    Liang, Jiye
    Wang, Feng
    Dang, Chuangyin
    Qian, Yuhua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (02) : 294 - 308
  • [37] A hybrid approach of rough set theory and genetic algorithm for fault diagnosis
    C.L. Huang
    T.S. Li
    T.K. Peng
    The International Journal of Advanced Manufacturing Technology, 2005, 27 : 119 - 127
  • [38] A hybrid approach of rough set theory and genetic algorithm for fault diagnosis
    Huang, CL
    Li, TS
    Peng, TK
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 27 (1-2) : 119 - 127
  • [40] MMR: An algorithm for clustering categorical data using Rough Set Theory
    Parmar, Darshit
    Wu, Teresa
    Blackhurst, Jennifer
    DATA & KNOWLEDGE ENGINEERING, 2007, 63 (03) : 879 - 893