Wronskian solutions of the constrained Kadomtsev-Petviashvili hierarchy

被引:39
作者
Oevel, W [1 ]
Strampp, W [1 ]
机构
[1] UNIV GESAMTHSCH PADERBORN,FACHBEREICH MATH 17,D-33095 PADERBORN,GERMANY
关键词
D O I
10.1063/1.531788
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrable Kadomtsev-Petviashvili (KP) hierarchy is compatible with generalized k-constraints of the type (L(k))_ = Sigma(i) q(i) partial derivative(-1)tau(i). A large class of solutions-among them solitons-can be represented by Wronskian determinants of functions satisfying a set of linear equations. In this paper we shall obtain additional conditions for these functions imposed by the constraints. (C) 1996 American Institute of Physics.
引用
收藏
页码:6213 / 6219
页数:7
相关论文
共 17 条
[1]   DARBOUX-BACKLUND SOLUTIONS OF SL(P,Q) KP-KDV HIERARCHIES, CONSTRAINED GENERALIZED TODA-LATTICES, AND 2-MATRIX STRING MODEL [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S .
PHYSICS LETTERS A, 1995, 201 (04) :293-305
[2]  
ARATYN H, 1995, HEPTH950321
[3]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[4]   CONSTRAINTS OF THE KP HIERARCHY AND MULTILINEAR FORMS [J].
CHENG, Y ;
STRAMPP, W ;
ZHANG, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (01) :117-135
[5]  
Crum M. M., 1955, Quater. J. Math. Oxford, V6, P121
[6]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[7]  
Dickey L.A., 1991, ADV SERIES MATH PHYS, V12
[8]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[9]   (1+1)-DIMENSIONAL INTEGRABLE SYSTEMS AS SYMMETRY CONSTRAINTS OF (2+1)-DIMENSIONAL SYSTEMS [J].
KONOPELCHENKO, B ;
SIDORENKO, J ;
STRAMPP, W .
PHYSICS LETTERS A, 1991, 157 (01) :17-21
[10]   SOLITON-EQUATIONS EXPRESSED BY TRILINEAR FORMS AND THEIR SOLUTIONS [J].
MATSUKIDAIRA, J ;
SATSUMA, J ;
STRAMPP, W .
PHYSICS LETTERS A, 1990, 147 (8-9) :467-471