A Novel Multimodal Radiomics Model for Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer

被引:64
作者
Zhang, Yiying [1 ]
He, Kan [1 ]
Guo, Yan [2 ]
Liu, Xiangchun [1 ]
Yang, Qi [1 ]
Zhang, Chunyu [1 ]
Xie, Yunming [1 ]
Mu, Shengnan [1 ]
Guo, Yu [1 ]
Fu, Yu [1 ]
Zhang, Huimao [1 ]
机构
[1] Jilin Univ, Hosp 1, Dept Radiol, Changchun, Peoples R China
[2] GE Healthcare, Shanghai, Peoples R China
关键词
lymphovascular invasion; rectal cancer; multimodal imaging; computed tomography; MRI; radiomics; nomogram; PROGNOSTIC-SIGNIFICANCE; MAGNETIC-RESONANCE; COLORECTAL-CANCER; IMAGES;
D O I
10.3389/fonc.2020.00457
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: To explore a new predictive model of lymphatic vascular infiltration (LVI) in rectal cancer based on magnetic resonance (MR) and computed tomography (CT). Methods: A retrospective study was conducted on 94 patients with histologically confirmed rectal cancer, they were randomly divided into training cohort (n = 65) and validation cohort (n = 29). All patients underwent MR and CT examination within 2 weeks before treatment. On each slice of the tumor, we delineated the volume of interest on T2-weighted imaging, diffusion weighted imaging, and enhanced CT images, respectively. A total of 1,188 radiological features were extracted from each patient. Then, we used the student t-test or Mann-Whitney U-test, Spearman's rank correlation and least absolute shrinkage and selection operator (LASSO) algorithm to select the strongest features to establish a single and multimodal logic model for predicting LVI. Receiver operating characteristic (ROC) curves and calibration curves were plotted to determine how well they explored LVI prediction performance in the training and validation cohorts. Results: An optimal multi-mode radiology nomogram for LVI estimation was established, which had significant predictive power in training (AUC, 0.884; 95% CI, 0.803-0.964) and validation (AUC, 0.876; 95% CI, 0.721-1.000). Calibration curve and decision curve analysis showed that the multimodal radiomics model provides greater clinical benefits. Conclusion: Multimodal (MR/CT) radiomics models can serve as an effective visual prognostic tool for predicting LVI in rectal cancer. It demonstrated great potential of preoperative prediction to improve treatment decisions.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Global patterns and trends in colorectal cancer incidence and mortality [J].
Arnold, Melina ;
Sierra, Monica S. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
GUT, 2017, 66 (04) :683-691
[2]   Multimodal fusion for multimedia analysis: a survey [J].
Atrey, Pradeep K. ;
Hossain, M. Anwar ;
El Saddik, Abdulmotaleb ;
Kankanhalli, Mohan S. .
MULTIMEDIA SYSTEMS, 2010, 16 (06) :345-379
[3]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[4]   Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting [J].
Beets-Tan, Regina G. H. ;
Lambregts, Doenja M. J. ;
Maas, Monique ;
Bipat, Shandra ;
Barbaro, Brunella ;
Curvo-Semedo, Luis ;
Fenlon, Helen M. ;
Gollub, Marc J. ;
Gourtsoyianni, Sofia ;
Halligan, Steve ;
Hoeffel, Christine ;
Kim, Seung Ho ;
Laghi, Andrea ;
Maier, Andrea ;
Rafaelsen, Soren R. ;
Stoker, Jaap ;
Taylor, Stuart A. ;
Torkzad, Michael R. ;
Blomqvist, Lennart .
EUROPEAN RADIOLOGY, 2018, 28 (04) :1465-1475
[5]   Rectal Cancer, Version 2.2018 Clinical Practice Guidelines in Oncology [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Cederquist, Lynette ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Engstrom, Paul F. ;
Grem, Jean L. ;
Grothey, Axel ;
Hochster, Howard S. ;
Hoffe, Sarah ;
Hunt, Steven ;
Kamel, Ahmed ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Mulcahy, Mary F. ;
Murphy, James D. ;
Nurkin, Steven ;
Saltz, Leonard ;
Sharma, Sunil ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Wuthrick, Evan ;
Gregory, Kristina M. ;
Gurski, Lisa ;
Freedman-Cass, Deborah A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (07) :874-901
[6]   Predictive factors in locally advanced rectal cancer treated with preoperative hyperfractionated and accelerated radiotherapy [J].
Bouzourene, H ;
Bosman, FT ;
Matter, M ;
Coucke, P .
HUMAN PATHOLOGY, 2003, 34 (06) :541-548
[7]   Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics [J].
Chen, Li-Da ;
Liang, Jin-Yu ;
Wu, Hui ;
Wang, Zhu ;
Li, Shu-Rong ;
Li, Wei ;
Zhang, Xin-Hua ;
Chen, Jian-Hui ;
Ye, Jin-Ning ;
Li, Xin ;
Xie, Xiao-Yan ;
Lu, Ming-De ;
Kuang, Ming ;
Xu, Jian-Bo ;
Wang, Wei .
LIFE SCIENCES, 2018, 208 :55-63
[8]   DWI and T2-Weighted MRI Volumetry in Resectable Recta Cancer: Correlation With Lymphovascular Invasion and Lymph Node Metastases [J].
Chen, Xiao-li ;
Chen, Guang-wen ;
Pu, Hong ;
Yin, Long-lin ;
Li, Zhen-lin ;
Song, Bin ;
Li, Hang .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (06) :1271-1278
[9]   Lymphovascular invasion in rectal cancer following neoadjuvant radiotherapy: A retrospective cohort study [J].
Du, Chang-Zheng ;
Xue, Wei-Cheng ;
Cai, Yong ;
Li, Ming ;
Gu, Jin .
WORLD JOURNAL OF GASTROENTEROLOGY, 2009, 15 (30) :3793-3798
[10]   The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM [J].
Edge, Stephen B. ;
Compton, Carolyn C. .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (06) :1471-1474